
Enabling Attribute Based Encryption as an Internet
Service

Runhua Xu∗ and James B.D. Joshi†
School of Information Sciences

University of Pittsburgh
Pittsburgh, USA

∗runhua.xu@pitt.edu, †jjoshi@pitt.edu

Abstract—Internet enabled services and technologies are
changing the way we use and manage massive amounts of data.
More and more users and organizations are increasingly relying
on cloud storage services for data management. In such Internet
enabled environments, protecting sensitive data is increasingly
becoming very crucial. Attribute-based Encryption (ABE) based
approaches have been recognized as very promising for data
protection in such environments. ABE approaches support data
confidentiality and fine-grained access control in Internet-based
environments, which include Internet of things (IoTs) and a
plethora of heterogeneous mobile devices that enable large scale
applications. However, in IoTs and mobile applications the limited
computational resources and finite battery power of devices make
it very difficult to use ABE schemes because of their heavy
computational requirements. Although outsourced computational
techniques have been applied in partial ABE schemes to address
such issues, a unified platform that supports all aspects of data
protection in an Internet-based open environment as well as fast
cryptographic operations and decentralized authorities, etc., is
still lacking. In this paper, we propose a novel Attribute Based
Encryption as a Service (ABEaaS) that can be leveraged for
data protection in the Internet environments. We propose an
ABEaaS framework that can be easily deployed and present
related security and performance analysis.

Index Terms—Internet Service; Cloud Computing; Data Access
Control; Attribute Based Encryption; Cloud Storage Service

I. INTRODUCTION

Recently, cloud storage service has been gaining significant
ground with potential “infinite” storage size, the convenience
of synchronization, and the ease of access at any time and from
anywhere. More and more users and organizations are thus
increasingly utilizing cloud storage services to manage data.
At the same time, with the increasing popularity and adoption
of mobile devices (e.g., laptops, pads, cell phones, and IoT
devices), cloud storage services are extending their support
for applications on multiple-devices including mobile devices
because of their varying resource constraints. However, there
are significant challenges towards making application secured
adaptable to multiple-device scenarios.

Although cloud storage services provide users with conve-
nience, they introduce newer problems of security and privacy.
A survey from Gartner 1 predicts that at the end of 2016,
more than 50 percent of 1,000 global companies would have

1Gartner, Inc. is the world’s leading information technology research and
advisory company.

customer-sensitive data stored in the public cloud. However,
there is also a significant insider threat of cloud storage
providers themselves secretly analyzing or leaking customers’
sensitive data. This raises a significant question about how
users are able to fully trust the cloud storage providers with
regards to protecting their sensitive data stored there. Towards
protecting customers’ sensitive data cryptographic techniques
and access control mechanisms should be adopted. In par-
ticular, to tackle the above-mentioned challenges, Sahai and
Waters [1] introduced the Attribute-based Encryption (ABE),
which provides fine-grained accesses control and data security
to outsourced data stored in the cloud.

ABE has been found to be a promising approach to enable
cryptography based access control mechanisms and various ex-
tensions have been proposed in the literature [2]–[6]. However,
ABE adoption in the IT industry is still a significant challenge.
There are two key challenges towards its adoption. First, as a
key part of an ABE based infrastructure, the authority center
is very hard to deploy in practice. Because it is particularly
difficult to deploy a global trust center for all Internet users.
Second, though multi-device scenarios are pervasive, there is
a limitation of computational resources and battery power
needed to support encryption and decryption operations in
small mobile devices, making ABE deployment in the mobile
devices very difficult. Various research efforts have focused
on employing outsourced computations to address resource
constraints in mobile devices, as in [2], [6]–[12]. Currently,
we believe there is a lack of an effective deployment approach
to make ABE mechanisms available broadly as a service to
support a broad set of mobile cloud applications that would
benefit from the ABE schemes.

In this paper, we present an Attribute Based Encryption
as a Service (ABEaaS) approach to address the second issue
mentioned above. Using ABEaaS, we propose a mechanism
to deploy ABE widely over various cloud platforms. The goal
of our proposed work is, thus, to support the use of mobile
cloud services with ABE for all types of resource-constrained
mobile devices.

In Figure 1, we illustrate an application scenario where
the proposed ABEaaS can be applied, where data is stored
in the cloud storage under the protection of an ABE scheme
that provides fine-grained access control. Furthermore, most
of the computations in the encryption and decryption phases

Fig. 1. Application scenario of ABEaaS

of ABE are packaged as a service provided by the cloud
itself. The ABEaaS requires users’ devices to support only a
small part of cryptographic computations without any potential
leakage of confidential computation. Suppose users want to
store and share their data in the cloud storage environment. In
data storing phase, they just need to pull some intermediate
ciphertexts from ABEaaS cloud based on what authority center
they named (encryption service). Then they encrypt the data
by a simple computation with the specified access policy and
the intermediate ciphertexts. In the data sharing phase, the
data receivers first request the secret keys and temporal keys
from the authority center. If their attributes satisfy the access
policy, they can get the intermediate ciphertexts decrypted
by the ABEaaS cloud with the temporal keys (decryption
service). Finally, they recover the original data by using simple
cryptographic computation with their secret keys.

The key contributions of the proposed work are as follows:

• We present a novel Attribute Based Encryption as a
Service (ABEaaS) that can be used by applications in
a mobile cloud environment. The goal of ABEaaS is to
provide an ABE service and reduce the computational
burden of users’ resource-constrained mobile devices.
Towards that the idea is to outsource most of non-
confidential encryption/decryption operations of the ABE
mechanism to the cloud.

• To enable ABEaaS we propose two parts: encryption ser-
vice platform and decryption service platform, which are
deployed in the cloud environment. To provide flexibility,
the ABEaaS also has two different settings called general
setting and hybrid setting to accommodate varying needs
of the users.

The rest of the paper is organized as follows. In Section II,
we present the concept of ABEaaS. Our proposed mechanism
for ABEaaS is described in Section III. We discuss and analyze
the security and performance in Section V and Section VI,
respectively. Finally, we conclude the paper in Section VIII.

II. ATTRIBUTE BASED ENCRYPTION AS A SERVICE

A. Goal of ABEaaS

We propose an Attribute Based Encryption as a Service
(ABEaaS) and the key goal is to construct a cryptographic
service that can be used by mobile applications. The key
requirements for such an ABEaaS service to be useful are
as follows:

• Security. As ABE is essentially a cryptographic mecha-
nism, the security of the service should be the first goal to
be considered. Enabling it as a computing service means
the security of this service module itself needs to be
properly considered.

• Elasticity and Scalability. The ABEaaS implementation
architecture should be elastic and scalable. That is, it
should be easy to add/remove a node easily without
impacting the service and it should scale well as the
number of nodes grows.

• Availability. The architecture of the service should also
be available all the time. One approach to that is through
redundancy, which means the system has a backup for its
service. It should not be affected when a single service
point is down.

B. Overview of ABEaaS

1) ABEaaS: In this paper, the proposed ABEaaS refers to
the secure delivery of attribute based encryption as a service
via the cloud computing platform. Note that:

• ABEaaS should ensure the security assurance of the
supported ABE schemes.

• ABEaaS should not introduce new security vulnerabilities
into the system.

• ABEaaS a computing service based on different cloud
platforms. Thus, it will inherit the advantages and disad-
vantages of cloud computing platform used.

An overview of the proposed ABEaaS is shown in Figure
2. Based on different cloud environments where encryption
service is deployed, we have two settings for the ABEaaS:

Fig. 2. Overview of ABEaaS

Hybrid Setting and General Setting. In the hybrid setting, the
encryption and decryption service are deployed in private and
public cloud, respectively. While in the general setting, both
the encryption and decryption service are deployed on the
public cloud.

The difference between hybrid setting and general setting
is where the encryption service is deployed and what opera-
tions the encryption service include. The encryption service
deployed in a private cloud can include more sensitive oper-
ations. From the users’ perspective, compared to the general
setting, the benefit of using the hybrid setting is that it can
help users reduce one pairing computation and one exponential
computation. Also the hybrid setting needs the support of
private cloud infrastructure that is not generally available for
common users. We prefer using general setting in the ABEaaS
for the following reasons:

• Both these settings provide the users with significant
performance, but the general can reduce deployment costs
of the ABEaaS.

• In the data access scenario, the frequency of read access is
much higher than the frequency of write access. Similarly,
in the ABE scenario, the decryption operation has a
higher frequency. The encryption service in the general
setting would not be the bottleneck that affects the usage
of the ABEaaS.

The hybrid setting could be the choice for the organizations
which have private cloud infrastructure. In the following
sections, we will focus on the general setting ABEaaS.

C. From ABE to ABEaaS

The ABEaaS is designed to be a unified platform which
adapts for most of ABE schemes. Recent various ABE
schemes have been proposed [1], [3]–[5], [13]–[16]. Because
the difference in the specific ABE constructions, it is hard to
make the ABEaaS available to every ABE scheme. We show
how to choose proper ABE schemes that could be applied in
our proposed ABEaaS framework.

1) Overview of ABE: Here, we briefly overview the ABE
scheme. ABE scheme was first introduced by Sahai and Waters
[1]. A typical ABE scheme consists of the following four
probabilistic polynomial time (PPT) algorithms:

• Setup. The setup algorithm sets up the parameters for
the ABE scheme, which includes public parameters and
master secret parameters.

• Key Generation. The key-generation algorithm generates
the necessary keys for the users.

• Encryption. Users use the encryption algorithm and spec-
ified access policy to encrypt the data.

• Decryption. Users use the decryption algorithm to decrypt
the ciphertext data.

As per the ABE scheme, users only need to execute the
encryption and decryption algorithms. Thus, the main services
provided by the ABEaaS are for encryption and decryption.

2) CP-ABE and KP-ABE: The two major types of ABE
schemes, Key-Policy Attribute Based Encryption (KP-ABE)
[16] and Ciphertext-Policy Attribute Based Encryption (CP-
ABE) [3], are designed for different application scenarios. The
difference between KP-ABE and CP-ABE are the approaches
to key generation and the types of attributes (attribute sets
/ attribute policy) that are used in encryption. However, the
ABEaaS is not responsible for key-generation algorithm, and
outsourced encryption computation does not include the com-
putation that relates to the specific access attributes. Due to the
similarity of the basic architecture of CP-ABE and KP-ABE,
both KP-ABE and CP-ABE can be applied in our ABEaaS
platform.

3) Access Structure: ABE has three different types of
access structures: AND-gate structure, Tree-based structure,
and Linear Secret Sharing Schemes (LSSS) structure. No
matter what kind of access structures are used in the ABE
schemes, the encryption components related to access struc-
ture is processed by users’ local device. Thus our ABEaaS
platform should be independent of the different types of access
structures in the ABE schemes.

4) Unbounded ABE: Initial ABE schemes are set up with
bounded attribute sets, i.e., the attributes used in ABE system
should be defined in the setup phase. That indicates, if new
attributes are introduced into the system, the ABE system
should restart to make the new attributes available. Meanwhile,
the previous ciphertext should be re-encrypted again if no
proper attribute version management is provided. As a uni-
versal service for a number of users in the cloud environment,
this attributes-predefine setting is unacceptable.

Thus the ABE schemes deployed in ABEaaS platform
should be unbounded, which means the generated public
parameters should not include components corresponding to
the particular attribute sets in the setup phase. We believe that
it is not a strict condition to apply the ABE schemes. By
using the proper hash technique, most of the ABE systems can
support unbounded attribute sets. In this paper, we adopt the
work by Rouselakis and Waters [5] who present a typical large
unbounded universe ABE scheme with new proof methods.
Furthermore, this scheme will be used as an instance in the
following section.

5) Technique to Outsource Computation: Inspired by the
works in [10]–[12], the computation outsourcing technique is
introduced into ABE schemes [2], [6]–[9]. The key idea is

to outsource partial computation to a powerful server without
impact on the functionality and security of the ABE scheme.

Among these schemes, Hohenberger and Waters [2] propose
a universal encryption outsourcing method that could be used
to update all unbounded ABE schemes. For outsourcing de-
cryption of ABE ciphertexts, Green et al. [6] give one universal
solution. By applying these techniques, the ABEaaS can be a
unified platform for all unbounded ABE schemes. Specifically,
the ABEaaS will prepare a number of intermediate ciphertext
components in advance for encryption. When users need to
encrypt data, they just request these prepared intermediate
ciphertext components from the ABEaaS platform and do
simple computation under the specified access structures. In
the decryption phase, users need to send the ciphertexts and
temporary keys to the ABEaaS platform and receive the
intermediate ciphertexts. Then the users need to do the final
decryption computation and get the original data.

III. ABEAAS ARCHITECTURE

In this section, we first show the overview of the ABEaaS
architecture. Then we present each part.

A. Overview

The architecture of the ABEaaS is shown in Figure 3. The
architecture has little difference for the hybrid and general
settings, mainly, there is an additional component called the
secret intermediate component in the hybrid setting. Further,
encryption and decryption service could be independent of
each other in the deployment setting.

B. Base Architecture

The base architecture of ABEaaS is based on a dual-master
multi-slave framework. There are two manager nodes and sev-
eral work nodes. Generally,each manager node is responsible
for managing several work nodes. The work nodes provide
the encryption or decryption services. As shown in Figure 3,
manager nodes have the following core functions:

• Entry and exit of the service. It is responsible for handling
the users’ service request.

• Management of work nodes. It checks the status of the
work nodes and manages them.

• Management of service costs. It manages the charge
methods, such as charge by flow, charge by usage, and
charge by time.

Note that there are two manage nodes in the ABEaaS platform.
One is the main manager node, and the other one is a backup
node to increase availability. The backup node synchronizes
with the main node in real time And it will be activated by the
cloud environment if the main manager node is down. Several
work nodes are responsible for the specific computation of
encryption/decryption service. As the computation task is a
short-time job and does not include contextual computation,
these nodes can work in parallel. That indicates each work
node is responsible for a task independently. Once a service
request is received, the manager node assigns available nodes

with associated computation task. This basic architecture sup-
ports the goal of scalability and availability that we discussed
in Section II-A.

C. Manager Node

The manager node in both encryption and decryption ser-
vices includes following two functional modules:

• Request Dispatcher (RD) is responsible for handling
the users’ service requests. It receives the request and
dispatches the request to an available work node. After
receiving the computation result, the manager node sends
it back to the user.

• Work Node Management (WNM). It manages a number of
work nodes in the cloud, supporting features like adding
and removing work node.

D. Work Node

As outsourcing computation algorithm for encryption and
decryption are different, it is hard to build a universal archi-
tecture for both of the services. Here we introduce the encryp-
tion service architecture and decryption service architecture,
respectively.

1) Encryption Service: The encryption service node has the
following components:

• Authority Management.
• Pools Management.
• Random Selector.
• Attribute Intermediate Ciphertext Generator.
• Attribute Intermediate Ciphertext Pool.

For the hybrid setting, there are two additional components,
Secret Intermediate Ciphertext Generator and Secret Interme-
diate Ciphertext Pool.

Authority Management (AM) component is responsible for
managing the public parameters (PK) from different authority
centers. In the cloud computing environment, it is hard to
require all users using a common authority center. Usually,
the users of ABEaaS are registered to different authority
centers. However, each intermediate ciphertext corresponds to
a specific authority center’s public parameters. That indicates
the ABEaaS platform will use a number of public parameters
from different authority centers. Thus it is necessary to have
an authority management component to manage these public
parameters.

Secret/Attribute Intermediate Ciphertext Generator
(SICG/AICG) are the core components in the encryption
service node. The AICG is in charge of generating intermediate
ciphertexts used for attributes related computation.
Additionally, for the hybrid setting, the SICG is for
generating the main security intermediate ciphertexts with a
specific PK.

Pools Management (PM), Secret Intermediate Ciphertext
Pool (SICP), and Attribute Intermediate Ciphertext Pool
(AICP) are the three pool related components. Due to several
components need to be calculated in the encryption service,
it will increase the processing time for users’ requests. To
increase the efficiency of the service, we propose the pool

Fig. 3. Architecture of ABEaaS Platform

architecture to store the pre-calculated intermediate ciphertext.
SICP and AICP are used to store the Secret Intermediate
Ciphertext (SIT) and Attribute Intermediate Ciphertext (AIT)
that are generated by SICG and AICG, respectively. PM
component manages the two pools.

Even though the two pools (SICP/AICP) store a number of
intermediate ciphertexts (SIT/AIT) pairs, each service request
only needs one SIT tuple and one AIT tuple. It is necessary to
have a Random Selector (RS) component to select a random
SIT tuple and a random AIT tuple from the pools.

2) Decryption Service: The decryption service has three
components: Authority Management, Job Sequence, and Com-
putation Center. Comparing to the architecture of encryption
service nodes, it is quite simple in decryption service nodes.
The decryption service nodes are responsible for computing
intermediate ciphertexts according to the temporary keys from
the users. However, the frequency of using decryption service
is several times than the frequency of using encryption service.
Thus the efficiency of decryption service is the main challenge
in the architecture of decryption service. As the delegation
decryption is a pipeline computation model, we design a Job
Sequence component to store the jobs with proper scheduling
strategy. Then the decryption jobs are executed in parallel
by several executors from computation center. The authority
management is the same to encryption service node.

E. Workflow of ABEaaS Platform

Initialization. Both encryption and decryption service need
to register authorities based on the initialization settings, which
include several default authorities. Then the encryption service
initializes the SICP and AICP by the SICG and AICG based
on the public parameters, respectively.

Encryption. When users want to encrypt data, they send an
encryption request to the service platform with the authority
identifier as the parameter. The manager node receives the
request and dispatches it to a work node with the authority

identifier. The work node first checks the authority module to
find whether the authority identifier exists or not.

a. If the authority identifier exists, the random selector will
choose the corresponding tuples from the SICP/AICP
randomly and return to manger node. Additionally, the
selected tuples will be removed from the two pools.

b. If the authority identifier does not exist, the work node
first queries the public parameters from the authority
center and registers to the platform. The work node
prepares the intermediate ciphertexts, fills the pools, and
then does as in (a).

Then the manager node returns the results to the users.
Decryption. The decryption workflow is similar to en-

cryption workflow. The only difference is that the decrypted
intermediate ciphertexts are not prepared in advance. When
computation jobs come into the job sequence, several work
nodes compute the results in parallel. Then the finished jobs
are returned to the users by the manager node.

IV. ABEAAS IMPLEMENTATION

ABE could be divided into KP-ABE and CP-ABE. In this
section, we use unified algorithms to present an ABEaaS
instance formally.

A. ABE Prototype in ABEaaS

Here is the prototype model of ABE scheme used in the
ABEaaS Instance, which is extended from [2] and [6]. The
presented ABE instance has the following six algorithms:

• Setupauthority(λ,U)→ (PK,MSK)
• KeyGenauthority(MSK,S)→ (TK, SK)
• Encryptservice(PK)→ (IT)
• Encryptuser(PK, IT,AC, data)→ (CT)

• Decryptservice(TK,CT)→ (C̃T)

• Decryptuser(C̃T , SK)→ (data)

Note that the subscript of each algorithm indicates the executor
of the algorithm, where authority represents the trust authority

center, service means the ABEaaS platform, and user indicates
the users of ABE service. The parameter AC in algorithm
Encryptuser represents access structure and attribute sets in
CP-ABE and KP-ABE, respectively.

B. Initialization

1) Authority Initialization: Suppose that we have m author-
ity centers all over the world and each authority center has its
public parameters (public key). Let Aux denote the Authority
Center x, where 1 ≤ x ≤ m. Then Aux generates the PKx

and MSKx as follows:

PKx =(Gx, px, gx, hx, ux, vx, wx, e(g, g)
αx),

MSKx =(αx),

where Gx is a random bilinear group with prime order px,
gx, hx, ux, vx, wx ∈R Gx, and αx ∈R Zpx . 2

2) ABEaaS Platform Initialization: Suppose that we have
a default authority setting list with size n. Let L =
(AuIDy, PKy), 1 ≤ y ≤ n be the authority list, where
AuIDy is the identifier of authority center and PKy is the
public parameters that are pulled from the corresponding
authority center. As shown in Algorithm 1, the algorithm
first initialize storage structures. Then it requests all public
parameters from the authority centers according to the default
authority setting. Based on the public parameters of each
authority, it generates the attributes intermediate ciphertexts
and stores them into the pools.

C. Encryption Service Algorithm

As shown in Algorithm 2, the encryption service algorithm
randomly selects attribute intermediate ciphertexts components
from the pool. Then it returns the selected components and
removes them from the pool. If the count of rest intermediate
ciphertexts in the pool is not enough, the manager node will
receive the signalempty and re-assign the request to another
working node. Finally, the manager node marks the status of
work node as statusempty.

D. Decryption Service Algorithm

The decryption service algorithm is shown in Algorithm
3. It first checks the id of the authority and finds the public
parameters of the authority. Then it puts the tuple (jobid, <
pkid, CT, TK >) into job sequence and keeps checking the
that until getting the results.

E. Pool Maintenance

As described in Encryption Service Algorithm (Algorithm
2), it keeps using the intermediate ciphertext from the pool.
Even though the size of the pool is much bigger than the
requested attribute size, the pool will be exhausted sooner or
later. The pool maintenance algorithm is designed for such
case, which will be executed by an independent process. Due
to its similarity to Service Initialization Algorithm (Algorithm
1), we do not give the specific algorithm description. The
maintenance algorithm keeps checking the status of all work

2Symbol “a ∈R A” indicates a is randomly chosen from A.

Algorithm 1 Service Initialization with General Setting.
Input: typeop, the service type (encrypt/decrypt),

typeABE , the ABE type (KP-ABE/CP-ABE),
list, the default authority setting list,
sizepool, the default size of pools.

Output: mauthority, a map for the authorities information,
mAICP , a map for the AICP.

1: initialize the map, mauthority

2: for id in list do
3: pkid ← request the public key from authority.
4: push (id, pkid)→ mauthority

5: end for
6: if typeop == “Encrypt” then
7: initialize the maps mAICP .
8: for id in list do
9: initialize a new list listAICP

10: pkid ← mauthority[id]
11: s← random(Zpid

)
12: for i = 0 to size do
13: if typeABE == “CP-ABE” then
14: λ, x, t← random(Zpid

)
15: C1 = gλidv

t
id, C2 = (ux

idhid)
t, C3 = gtid

16: add tuple (λ, x, t, C1, C2, C3)→ listAICP

17: else
18: r, x← random(Zpid

)
19: C1 = wr

id, C2 = (ux
idhid)

rw−s

20: add tuple (r, x, s, C1, C2)→ listAICP

21: end if
22: end for
23: push (id, listAICP)→ mAICP

24: end for
25: return mauthority,mAICP

26: else
27: return mauthority

28: end if
Note: the function random(A) generates random elements
between 0 and |A|.

nodes. If the status of a work node is out of service by pool
empty, it will fill the pool as required, which is similar to
line:8-22 in Algorithm 1. Then it marks the status of work
node as statusworking .

V. SECURITY ANALYSIS

The ABEaaS platform includes two major parts: the ABE
scheme and the service architecture. We analyze the security
requirements of ABEaaS in this section.

A. Assumption

Before the security analysis, we list two general assumptions
first:

• The cloud provider is honest-but-curious, i.e., that the
cloud provider is honest, but try to collect users’ infor-
mation. This is a general assumption in the literature.

Algorithm 2 Encryption Service.
Input: id, the authority id of the user,

sizeattribute, the number of attributes size,
mAICP , a map represented the AICP,
mauthority, the authorities information.

Output: itattribute, the tuple of attribute intermediate cipher-
text.

1: if id in mauthority then
2: pull pkid ← mauthority

3: else
4: execute the initialization with the id
5: end if
6: listAICP,id ← mAICP [id]
7: if |listAICP,id| > sizeattribute then
8: for i = 0 to sizeattribute do
9: indexrandom ← random(|listAICP,id|)

10: ittuple ← pop listAICP,id[indexrandom]
11: add ittuple → itattribute
12: end for
13: return itattribute
14: else
15: return signalempty

16: end if
Note: that sizeatt << sizepool, which indicates the size
of requested attributes set is much smaller than the size
of pool. |A| denotes the size of list A.

Algorithm 3 Decryption Service.
Input: id, the authority id of the user,

S, the job sequences,
CT , the ciphertext,
TK, the temporary key of CP-ABE.

Output: C̃T , the intermediate ciphertext.
1: if id in mauthority then
2: pull pkid ← mauthority

3: else
4: execute the initialization with the id
5: end if
6: push tuple (jobid, < pkid, CT, TK >)→ S
7: for true do
8: if status of jobid == signaldone then
9: C̃T ← S[jobid]

10: return C̃T
11: end if
12: if time out then
13: return signaltime.out

14: end if
15: end for

• The communication between the service user and
ABEaaS platform is protected using a secure channel.
Thus the security issues about the data transmission will
not be discussed.

B. Security of ABE

As one of the major parts, the ABEaaS applies the ABE
schemes based on the principle specified in Section II-C, but
does not change the secure base of the ABE schemes. We refer
the readers to find the formal security proof from the works
[2], [6] mentioned earlier.

C. Security of Service Architecture

In this section, we show the security analysis of another
major part, service architecture, in the ABEaaS.

1) Security of Encryption Service Node: In the general
setting, the sensitive modules are AICG and AICG pools. In
the hybrid setting, there are two additional sensitive related
modules, SICG and SICG pool. These modules are sensitive
because they produce the intermediate components for the
encryption.

The encryption service does not introduce new risk in
security for the following reasons: i) The AIC is the inter-
mediate information, but does not include any secret. ii) The
AIC/SIC is disposable, i.e., when the intermediate ciphertext
is used, it will be destroyed immediately. iii) The intermediate
ciphertext is randomly selected from the pool. iv) Even though
the SIC includes secret information, it is only used in the
hybrid setting, but not in the general setting. Based on our
assumption, the encryption service architecture satisfies the
security requirement.

2) Security of Decryption Service Node: The decryption
operation in the ABEaaS architecture is not complex. Essen-
tially, decryption service is a delegation computation service.
As shown in the security analysis of outsourced decryption
in [6], the delegation computation does not introduce new
security issues. As the decryption service architecture of the
ABEaaS does not change the structure of delegation compu-
tation algorithm, we believe that our decryption service node
does not introduce extra security issues.

Note that security issues related to the cloud environment,
e.g., DDoS attack, in general can still be prevented.

VI. PERFORMANCE ANALYSIS

A. Scalability and Availability

The ABEaaS platform is based on the dual-master multi-
slave architecture. The main manager node has a backup
manager node with real-time synchronization. Backup nodes
can be used to ensure a higher level of availability. Addition-
ally, the availability of work node is also guaranteed by the
design of multi work nodes. Due to the design of independent
computing of each work node, it is easy to add/remove the
work nodes without impacting the service computation. Thus
the ABEaaS also provides scalability.

B. Efficiency of Using ABEaaS

1) Efficiency Estimates: We show the efficiency estimates
from the users’ perspective, as shown in Table I, theoretically.
Compare to a specific ABE scheme [5], the ABEaaS scheme
can help users to reduce all the bilinear map computation,

which is the major computation consumption in the pair-
based cryptographic schemes. Further, the ABEaaS scheme
also helps users reduce most of the exponentiation and multi-
plication computation.

2) Experiment Setting: A prototype system of the ABEaaS
applying ABE scheme described in [5] is implemented by
using a framework called Charm [17]. Charm is a framework
for rapidly prototyping advanced crypto-systems based on
Python. Our experiment is simulated on the MacBook Pro
with 2.5 GHz Intel Core i7 processor and 16GB memory.

In the experiment, we design ten policy cases with the
number of attributes from 1 to 10. For each policy case, we
test user’s encryption/decryption time using the original ABE
scheme and the ABEaaS, respectively. Note that the recorded
operation time is measured by the CPU execution time and
the measurement unit is the millisecond.

3) Analysis of the Result: As shown in Figure 4, we
compare the user’s operation time between the original ABE
scheme and the ABEaaS scheme in the General Setting. For
user’s encryption, the time of both schemes increases with
the number of attributes. However, compared to the original
ABE scheme, the ABEaaS scheme reduces the computation for
users’ device significantly, as shown in Figure 5(a). For the
user’s decryption service, the time of original ABE scheme
increases with the number of attributes. While the time of
ABEaaS scheme is flat, as shown in Figure 5(b). The experi-
mental result is consistent with the theoretical analysis in Table
I.

Based on the experiment result, we show further analysis
on the performance of the ABEaaS system. As shown in
Figure 5(a), the ABEaaS system could save user’s computation
time both in encryption and decryption. Compared with the
traditional ABE user, the ABEaaS user will save more time
when the complexity of access policy increases.

Here we define the advantage of using ABEaaS (PAdv) of
the ABEaaS system as:

PAdv =
timeABE − timeABEaaS

timeABE
× 100(%)

As shown in Figure 5(b), with the growth of the number of
attributes, the advantage of using ABEaaS research close to
100

VII. RELATED WORKS

Sahai and Waters [1] first proposed the fuzzy Identity-
based Encryption, which is the original prototype of Attribute-
based Encryption (ABE). Then various works [3]–[5], [14]–
[16] is presented to tackle different issues in the ABE. For
instance, Ciphertext Policy Attribute based Encryption (CP-
ABE), which is proposed by Bethencourt et al. [4], makes
ABE scheme adoptable for outsourced data sharing in the
cloud environment with features like data confidentiality and
access control. Waters [3] also presents another CP-ABE
scheme to fix the efficiency and access policy expressiveness
issues in previous ABE constructions. The construction from
Rouselakis in [5] tackles the issue of pre-defining the attribute

(a) Comparison of users’ encryption time

(b) Comparison of users’ decryption time

Fig. 4. Comparison of users’ operation time (Original ABE scheme v.s.
ABEaaS scheme) in General Setting

sets to make the ABE support large universe attribute sets.
Even though the efficiency of ABE schemes has been in-
creased, that is not enough. Due to the limitation of computa-
tion and battery power of mobile devices, these ABE schemes
are still not adaptable in the real mobile cloud scenario.

To tackle the challenge of making ABE available to mo-
bile application, several schemes has been proposed. As the
computation delegation [10]–[12] technique has been widely
used, computation outsourcing has been introduced into ABE
schemes [2], [6]–[9], [13]. Among them, Hohenberger and
Waters [2] focus on the “online/offline” encryption to reduce
the burden of encryption algorithm in ABE. Green et al.
[6] propose the scheme supporting outsourced decryption. To
verify the result of outsourced decryption, works in [7] and
[8] present different solutions. However, these schemes still
stop at the theoretical design phase. Our work will be a
beneficial supplement in applying and promoting ABE in the
real scenarios.

VIII. CONCLUSION

In this paper, we proposed a novel Attribute Based Encryp-
tion as a Service to reduce the computational burden of users’
and make the service available over the Internet. We presented
the proposed architecture of the ABEaaS. The ABEaaS could
be deployed in any cloud environment and provides two setting
regarding to different service demands. Furthermore, we also
presented the unified algorithms for the ABEaaS instance.

TABLE I
USER’S COMPUTATION ESTIMATES

Schemes ABE [5] ABEaaS

Encryption B+ (5|P |+ 2)E+ (2|P |+ 1)M |P |M
Decryption (|P ′ |+ 2)B+ 2|P ′ |E+ (2|P ′ |+ 2)M M+ E

1 Let B, E and Mp be the bilinear map, exponentiation, and multiplication operations, respectively.
2 Let |P | and |P ′ | be the complexity of the access policy and the size of the minimal set of attributes, respectively.

(a) Users’ time saving using the ABEaaS

(b) PAdv result of the experiment

Fig. 5. Advantage of using the ABEaaS in General Setting

Finally, we presented the security and performance analysis.
As future work, we plan to implement and deploy the proposed
architecture in the real environment to find the potential system
boundary due to number of concurrent users.

ACKNOWLEDGMENT

This work has been supported by 2015 CAE Cybersecurity
Research Grant BAA-003-15.

REFERENCES

[1] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In
Advances in Cryptology–EUROCRYPT 2005, pages 457–473. Springer,
2005.

[2] Susan Hohenberger and Brent Waters. Online/offline attribute-based
encryption. In Public-Key Cryptography–PKC 2014, pages 293–310.
Springer, 2014.

[3] Brent Waters. Ciphertext-policy attribute-based encryption: An ex-
pressive, efficient, and provably secure realization. In Public Key
Cryptography–PKC 2011, pages 53–70. Springer, 2011.

[4] John Bethencourt, Amit Sahai, and Brent Waters. Ciphertext-policy
attribute-based encryption. In Security and Privacy, 2007. SP’07. IEEE
Symposium on, pages 321–334. IEEE, 2007.

[5] Yannis Rouselakis and Brent Waters. Practical constructions and
new proof methods for large universe attribute-based encryption. In
Proceedings of the 2013 ACM SIGSAC conference on Computer &
communications security, pages 463–474. ACM, 2013.

[6] Matthew Green, Susan Hohenberger, and Brent Waters. Outsourcing the
decryption of abe ciphertexts. In USENIX Security Symposium, volume
2011, 2011.

[7] Suqing Lin, Rui Zhang, Hui Ma, and Mingsheng Wang. Revisiting
attribute-based encryption with verifiable outsourced decryption. In-
formation Forensics and Security, IEEE Transactions on, 10(10):2119–
2130, 2015.

[8] Baodong Qin, Robert H Deng, Shengli Liu, and Siqi Ma. Attribute-based
encryption with efficient verifiable outsourced decryption. Information
Forensics and Security, IEEE Transactions on, 10(7):1384–1393, 2015.

[9] Sourya Joyee De and Sushmita Ruj. Decentralized access control on
data in the cloud with fast encryption and outsourced decryption. In
2015 IEEE Global Communications Conference (GLOBECOM), pages
1–6. IEEE, 2015.

[10] Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive
verifiable computing: Outsourcing computation to untrusted workers.
In Advances in Cryptology–CRYPTO 2010, pages 465–482. Springer,
2010.

[11] Kai-Min Chung, Yael Kalai, and Salil Vadhan. Improved delegation
of computation using fully homomorphic encryption. In Advances in
Cryptology–CRYPTO 2010, pages 483–501. Springer, 2010.

[12] Craig Gentry et al. Fully homomorphic encryption using ideal lattices.
In STOC, volume 9, pages 169–178, 2009.

[13] Allison Lewko. Tools for simulating features of composite order
bilinear groups in the prime order setting. In Advances in Cryptology–
EUROCRYPT 2012, pages 318–335. Springer, 2012.

[14] Allison Lewko and Brent Waters. Unbounded hibe and attribute-based
encryption. In Advances in Cryptology–EUROCRYPT 2011, pages 547–
567. Springer, 2011.

[15] Tatsuaki Okamoto and Katsuyuki Takashima. Fully secure un-
bounded inner-product and attribute-based encryption. In Advances in
Cryptology–ASIACRYPT 2012, pages 349–366. Springer, 2012.

[16] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-
based encryption for fine-grained access control of encrypted data. In
Proceedings of the 13th ACM conference on Computer and communi-
cations security, pages 89–98. Acm, 2006.

[17] Joseph A. Akinyele, Christina Garman, Ian Miers, Matthew W. Pagano,
Michael Rushanan, Matthew Green, and Aviel D. Rubin. Charm: a
framework for rapidly prototyping cryptosystems. Journal of Crypto-
graphic Engineering, 3(2):111–128, 2013.

