

An Integrated Privacy Preserving Attribute Based Access Control Framework

Runhua Xu & James Joshi

University of Pittsburgh

runhua.xu@pitt.edu

Cloud Storage

Top Cloud Storage Providers

Google Cloud

Amazon Web Service

Microsoft Azure...

Take MS Azure as an Example

2012, 4 Trillion Objects 2015 Jan, 10 Trillion Objects

Source: https://www.nasuni.com/infographic-2015-state-of-cloud-storage/

Cloud Storage

Recent advances have enabled applications that generate/collect *huge amounts of personal data*.

At year-end 2016, more than of Global 1000 companies will have stored customer-sensitive data in the public cloud

Cloud Storage Providers

Honest-but-Curious

Gartner, Inc. is the world's leading information technology research and advisory company.

- Gartner

-- run the programs and algorithms correctly but gather information related to the stored data and access records.

Security & Privacy Concerns: Personal Data / Sensitive Data

Source: http://www.gartner.com/newsroom/id/1862714

Initial Solution

Scenario

A patient-centric health application

-- that allows a patient/user to store and manage all his Electronic Health Records (EHRs) by storing them in Cloud Storage

Similar scenarios:

- User-centric applications
- Organization-centric applications
- Hospital-centric applications

How to protect user-sensitive data in the public cloud ?

Challenges

- Challenges of applying CP-ABE to the Scenarios
 - Support both revocation and privacy-preserving policy
 - Limitation of all CP-ABE schemes
 - Only support read access
 - But don't support write access & policy update
 - Access patterns leak
 - Data is protected by encryption, it doesn't matter ?
 - E.g., encrypted data in the cloud, which is often accessed from hospitals, may be identified as EHRs, then link to a specific patient.

The key contributions

• A privacy-preserving revocable CP-ABE scheme (PR-CP-ABE)

- Privacy-preserving Access Structure
 - Linear Secret Sharing Scheme (LSSS)
- Supports immediate attribute revocation

(ID: abc@xyz.com OR SSN: 123-45-6789) OR (Affiliation: University Hospital AND Vocation: Physician)

(ID: * OR SSN: *) OR (Affiliation: * AND Vocation: *)

The key contributions

- An extended path oblivious RAM (ePath-ORAM) protocol
 - Prevents privacy disclosure of access patterns
 - Supports data/policy update
- Security proof of the PR-CP-ABE scheme

Preliminaries: What's CP-ABE

Slide from ESORICS

CP-ABE in detail

PK_{CS}, PK_{EE}, ... PK_{PhD}, PK_{ALU}, ... PK_M, PK_F, ... PK₁₉₈₀, PK₁₉₈₁,.. ...

PK

Dept.: CS, EE, ... Type: PhD Stud., Alumni, ... Gender: Male, Female Birth Year: 1980, 1981,

 SK_{S_A}

MSK

Data Model

Encrypted data under KEM setting

Used to verify a user's write permission By checking decryption ability on a random seed

Three access structure (hide value)

 $\mathcal{D} = (id, \mathcal{P}_r, \mathcal{P}_w, \mathcal{P}_o, Enc_{k_{\delta}}(data)),$

 $\mathcal{P}_w = (\langle A_w, \rho_w \rangle, Enc_\gamma(s_w), s_w),$ $\mathcal{P}_o = (\langle A_o, \rho_o \rangle, Enc_\gamma(s_o), s_o).$

 $\mathcal{P}_r = (\langle A_r, \rho_r \rangle, Enc_\gamma(k_\delta)),$

where

Instance of PR-CP-ABE

ePath ORAM Protocols

- Tricks behind PR-CP-ABE construction
 - Composite Order Bilinear Groups
 - Introduce random elements from a subgroup into algorithms to perturb/hide ciphtertext components ←→ attributes
 - Use the property to eliminate random elements

$$\begin{cases} h_r \in \mathbb{G}_r \\ h_p \in \mathbb{G}_p \end{cases} \quad \blacksquare \quad e(h_r, h_p) = 1$$

- Re-encrypt technology
 - Divide the initial secret element $\alpha = \alpha_1 + \alpha_2$
 - One is corresponding to user, the other is for delegation (CSP)

- Forward Security
 - Protects past ciphertext against future compromises of secret keys.
 - If attribute is revoked
 - Users can not update the corresponding private key
 - Thus they can not decrypt again
- Backward Security
 - A new user joins in an attribute group that satisfies the policy
 - Suppose he has a previous ciphtertext
 - Even if he can update private key, he can not decrypt it
 - Random elements in previous component D' $\leftarrow X \rightarrow$ new user's private key

Key features

Schemes	Access Structure (AS)	Immediate Revocation	Privacy-preserving AS			
[39]	LSSS Matrix	Yes	No			
[38]	And-gate	Yes	No			
[15]	Tree-based	Yes	No			
[20]	LSSS Matrix	No	Yes			
[23]	And-gate	No	Yes			
Ours	LSSS Matrix	Yes	Yes			

Table 1: Comparison of key features

Performance

- As shown in previous experiments.
 - Encryption/decryption \rightarrow milliseconds level
 - Key Application (network communication) \rightarrow seconds level

		•		
Entities	Our scheme	[39]	[38]	[15]
Authority \leftrightarrow User	$(2 + n_{a,i}) a $	$(2 + n_{a,i}) a $	$(1+2n_{a,i}) a $	$(1+2n_{a,i}) a $
Authority \leftrightarrow Owner	$\frac{(2 + n_{a,i}) g }{(2 + n) a + a_{m} }$	$\frac{(2 + h_{a,i}) g }{2 a + a_{\pi} }$	$(1 + 3n_{a,i}) g + a_{m} $	$2 a + a_{\pi} $
CSP () Usor	$(2 + n) g + g_1 $ $(4l + 2) g + 2 g_2 $	(2l + 2) a + am + l m	$(1 + 3n_{a,i}) g + gT $ $(3l + 2n_{a,i}) g + a\pi $	2 g + g
$CSF \leftrightarrow USEI$	(4l+3) g +2 gT	$\frac{(2i+3) g + g_T +i p }{2}$	$(3i+2n_{a,i}) g + g_T $	$(3i + 2n_{a,i}) g + gT $
				$+(l/2 \times n_u + log(n_u + 1)) p $
$CSP \leftrightarrow Owner$	$2((2l+1) g + g_T)$	$(2l+1) g + g_T $	$3l g + g_T $	$2l g +(l+1) g_T $

Table 2: Comparison of communication cost

 $\begin{bmatrix} 1 \\ 2 \\ n_{a,i} \end{bmatrix}$ and $|g_T|$ are the elements size in \mathbb{Z}_p , \mathbb{G} and \mathbb{G}_T , respectively.

l represents the number of attributes associated with the ciphertext.

Our scheme makes a compromise on performance for privacy-preserving policy, compared with [39] However, our scheme's performance is better than others

Security Proof

- Methodology
 - Suppose that adversary has advantage to break our scheme
 - Adversary's advantage $\leftarrow \rightarrow$ break q-parallel BDHE assumption
 - However, no-polynomial time algorithm has advantage to break assumption
 - Thus no adversary has advantage to break our scheme

Please find the detail proof in Appendix.

Conclusion

- A novel privacy-preserving attribute-based access control framework
 - PR-CP-ABE
 - Privacy-preserving
 - Revocation
 - Security Proof: CPA
 - ePath-ORAM Protocol
 - Preserve access pattern
 - Extend PR-CP-ABE to support r/w/o access
 - Features
 - User-centric data and policy management
 - Immediate privilege revocation
 - Privacy protection

Q & A

Thanks

