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Special Scenario, e.g., Small Clinics - Computer Aided Diagnostic Application
Challenges
Limited IT infrastructure and AI resources/experts

v.s.
Privacy-sensitive data – e.g., patients’ electronic healthcare records

How to train a ML model without leaking privacy-sensitive data using cloud-based ML service ?
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How existing privacy-preserving ML approaches work in cloud-based service

“Dataset”

GC-SMC

Privacy-Preserving Approaches 
v Noise Addition

o Differential Privacy, e.g., deep learning with differential privacy.
v Secure Multiparty Computation (SMC)

o “non-crypto” based approach – garbled circuit (GC) + oblivious transfer (OT), e.g., DeepSecure, etc. 
o “crypto” based approach – homomorphic encryption (HE), e.g., CryptoNets, etc.



Background

Monday, July 8, 2019 The Laboratory for Education and Research on Security Assured Information Systems (LERSAIS) 3

Adoption of Privacy-Preserving Approaches in ML Cloud : Trade-off Issue 

v Noise Addition
o Differential Privacy

v Secure Multiparty Computation (SMC)

o “non-crypto” based approach – GC + OT

o “crypto” based approach – HE

trade-off : privacy v.s. utility 

trade-off : computation v.s. transmission 

require large transmission volume

require higher computation time
--only support prediction phase



Comparison of Privacy-preserving ML Approaches
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CryptoNN in Cloud-based ML Service
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Functional Encryption
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In FE, for a function 𝑓 " , the decryption key 𝑠𝑘% only reveals partial 
information, i.e., 𝑓 𝑥 instead of 𝑥.

S1: Setting up, 𝑝𝑘 + 𝑚𝑠𝑘, deliver 𝑝𝑘 and hold 𝑚𝑠𝑘

S2: Encryption 𝑥 ⟶ 𝑒𝑛𝑐(𝑝𝑘, 𝑥) S3: Request private key 𝑠𝑘% from TPA 

TPA

Alice Bob

S5: Decryption: 𝑑𝑒𝑐 𝑒𝑛𝑐 𝑝𝑘, 𝑥 , 𝑠𝑘% ⟶ 𝑓 𝑥

S4: Generate 𝑠𝑘% using 𝑚𝑠𝑘

In traditional encryptions scheme, decryption algorithm reveals all or nothing



Functional Encryption -- Inner-Product
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𝑓 𝒙, 𝒚 =< 𝒙, 𝒚 > =6
789

:

𝑥7 " 𝑦7

Abdalla, Michel, et al. "Simple functional encryption schemes for inner products." IACR International Workshop on Public Key Cryptography (PKC 
2015). Springer, Berlin, Heidelberg, 2015.

TPA

Alice Bob

𝑠𝑒𝑡𝑢𝑝(1?, 1@) → 𝑝𝑘 + 𝑚𝑠𝑘

𝑝𝑘

𝑒𝑛𝑐 𝒙, 𝑝𝑘 → 𝑐𝑡

𝒚

Alice has 𝒙, and Box has 𝒚.

Goal: 
Let Bob know the result of 𝑓 𝒙, 𝒚 , 
but is not able to learn 𝒙. 

𝑐𝑡

𝑘𝑒𝑦_𝑑𝑒𝑟𝑖𝑣𝑒 𝒚,𝑚𝑠𝑘 → 𝑠𝑘%
𝑠𝑘%

𝑑𝑒𝑐 𝑐𝑡, 𝑠𝑘% → 𝑓(𝒙, 𝒚)



Secure Matrix Computation
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𝑐𝑡9 ← 𝑒𝑛𝑐(𝒙9)

𝑿𝒀𝒍×𝒎
𝒀𝒏×𝒎

𝑿𝒍×𝒏

𝑐𝑡M ← 𝑒𝑛𝑐(𝒙M)

𝑠𝑘%N 𝑠𝑘%O

Decryption

Computation

e𝑛𝑐 𝑿 = (𝑐𝑡9, … , 𝑐𝑡M)

𝑠𝑘%,𝒀 = (𝑠𝑘%N, … , 𝑠𝑘%O)

𝑑𝑒𝑐(𝑐𝑡9, 𝑠𝑘%N)

𝑑𝑒𝑐(𝑐𝑡9, 𝑠𝑘%O)

𝑑𝑒𝑐(𝑐𝑡M, 𝑠𝑘%O)

𝑥99 ⋯ 𝑥9:
⋮ ⋱ ⋮
𝑥M9 ⋯ 𝑥M:

𝑦99 ⋯ 𝑦9T
⋮ ⋱ ⋮
𝑦:9 ⋯ 𝑦:T

𝑧99 ⋯ 𝑧9T
⋮ ⋱ ⋮
𝑧M9 ⋯ 𝑧MT

𝑿𝒍×𝒏, 𝒀𝒏×𝒎, s.t. n > 𝑚

Alice

Bob

Two Parties



Neural Networks - Gradient Descent
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Input Layer
Hidden Layer

Output Layer

feed-forward

back-propagation cost evaluation
X W[1] W[2] W[l-1] W[l]

W𝒀 = 𝑨[M]

𝐸 =
1
𝑛6

7

:

\𝑦(7) − 𝑦(7) ^

𝑾[M] = 𝑾[M] − 𝛼
𝜕𝑬
𝜕𝑾[M]

c𝑬
c𝑾[d] = c𝑬

c𝑨[d]
c𝑨
c𝒁[d]

c𝒁
c𝑾[d]

𝑔(𝑧) =
1

1 + 𝑒hi

c𝒁
c𝑾[d] = 𝑨[Mh9], c𝒁

c𝒁[d]
= 𝑨 M 1 − 𝑨 M , c𝒁

c𝒁[d]
= 𝑨 M − 𝒀

𝑨[9] = 𝑔(𝒁[9]), 𝒁[9]= 𝑾[9]𝑿 + 𝒃[9]

𝑨[^] = 𝑔(𝒁[^]), 𝒁[^]= 𝑾[^]𝑨[9] + 𝒃[^]

𝑨[Mh9] = 𝑔(𝒁[Mh9]), 𝒁[Mh9]= 𝑾[Mh9]𝑨[Mh^] + 𝒃[Mh9]
… ….

𝑨[M] = 𝑔(𝒁[M]), 𝒁[M]= 𝑾[M]𝑨[Mh9] + 𝒃[M]



Neural Networks meet Functional Encryption
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𝑨[9] = 𝑔(𝒁[9]), 𝒁[9]= 𝑾[9]𝑿 + 𝒃[9]

à
Dec

𝑠𝑘%,𝑾[N]𝐸𝑛𝑐(𝑿) 𝑾[9]𝑿𝑾[9]

Secure Matrix Computation

FE for Basic Operations
or Garbled Labels



CryptoNN – Framework Overview
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Experimental Evaluation
• Prototype Implementation

• A scratch implementation of LeNet-5 in Python
• FE scheme implementation 

• Charm-crypto (Python) – underlying numerical calculations rely on GMP library (C)

• Test platform
• Intel Core i7/16GB/macOS
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Experimental Evaluation
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x-axis: the element size
y-axis: the computing time

Time cost of dot-product in secure matrix computation

𝑥, 𝑦 : 100
𝑥 = (𝑥9, 𝑥^, … , 𝑥9k)
𝑦 = (𝑦9, 𝑦^, … , 𝑦9k)

𝑥7, 𝑦7 ∈ [1,100]

e.g., one intuitive result 

𝑋9kk×9k " 𝑌9k×9kk = 𝑋𝑌9kk×9kk

à 7-8 seconds (parallelized)



Experimental Evaluation
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LetNet-5 Neural Networks

60000 training / 10000 test  
MNIST dataset

Hyper Parameters Setting
Float Point Precision Setting:  2

-- the # of bits used after the decimal point of a floating point number
-- encoding floating point number à integer number

Bath Size: 64
Learning Rate: 5e-4

Comparing to baseline: 
-- achieving similar average batch accuracy
-- costing about 14 times training time

Note this is result of submitted version.
In our follow-up work, we have an efficient implementation of 
decryption : 𝑋9×^p " 𝑌^p×9 from 40s à 0.2ms



Summary
• CryptoNN framework

• Secure multiparty computation based on FE
• CryptoNN framework
• Concrete instance, CryptoCNN
• Evaluation Results

• Future work
• More efficient approaches
• Prevent intermediate model inference attack
• Other NN architecture
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