University of Pittsburgh School of Computing and Information

LERSAIS The Laboratory for Education and Research on Security Assured Information Systems

The 39th IEEE International Conference on Distributed Computing Systems (ICDCS 2019) Dallas, Texas, US

CryptoNN: Training Neural Networks over Encrypted Data

Runhua Xu, James Joshi and Chao Li *runhua.xu@pitt.edu*

Background

Cloud-based ML Service

Special Scenario, e.g., Small Clinics - Computer Aided Diagnostic Application

Challenges

Limited IT infrastructure and AI resources/experts

v.s.

Privacy-sensitive data – e.g., patients' electronic healthcare records

How to train a ML model without leaking privacy-sensitive data using cloud-based ML service ?

Monday, July 8, 2019

Background

How existing privacy-preserving ML approaches work in cloud-based service

Privacy-Preserving Approaches

- Noise Addition
 - Differential Privacy, e.g., deep learning with differential privacy.
- Secure Multiparty Computation (SMC)
 - "non-crypto" based approach garbled circuit (GC) + oblivious transfer (OT), e.g., DeepSecure, etc.
 - "crypto" based approach homomorphic encryption (HE), e.g., CryptoNets, etc.

Background

Adoption of Privacy-Preserving Approaches in ML Cloud : Trade-off Issue

- Noise Addition
 - Differential Privacy
- Secure Multiparty Computation (SMC)
 - "non-crypto" based approach GC + OT
 - "crypto" based approach HE

- trade-off : privacy v.s. utility
- trade-off : computation v.s. transmission
 - require large transmission volume
 - require higher computation time --only support prediction phase

Comparison of Privacy-preserving ML Approaches

Proposed Work	Training	Prediction	Privacy [▷]	ML Model	Approach
Privacy-Preserving Deep Learning (CCS) [7] Deep Learning with differential privacy (CCS) [8] CryptoML [4] SecureML [6] DeepSecure [5] CryptoNets [3], [9], [10], [11], [12], [13], [14], [15] ML classication over encrypted data (NDSS) [2] CryptoNN (our work)		0 0 • •		Deep Learning Deep Learning Matrix-based ML General Deep Learning Covers All Limited ML [†]	Distributed [*] Differential Privacy [◊] Delegation [‡] Secure Protocol (SMC) Secure Protocol (Garbled Circuits) Homomorphic Encryption (HE) HE + Secure Protocol Functional Encryption

COMPARISON OF PRIVACY-PRESERVING APPROACHES IN MACHINE LEARNING MODELS

This column indicates the privacy strength/guarantee such as mild approach (e.g. differential privacy) and strong guarantee (e.g. crypto system).
It only supports Hyperplane Decision, Nave Bayes, and Decision Trees models.

[‡] The data owner trains the model by itself and outsources partial computation in a privacy-preserving setting.

* The model is trained in a distributed manner where each data owner trains a partial model on their private data.

[♦] It applies differential privacy method on the training data.

CryptoNN in Cloud-based ML Service

How CryptoNN works in cloud-based ML service

Cloud/Server based ML (as a Service) -- Clients

Functional Encryption

In traditional encryptions scheme, decryption algorithm reveals all or nothing

In FE, for a function $f(\cdot)$, the decryption key sk_f only <u>reveals partial</u> <u>information</u>, i.e., f(x) instead of x.

Functional Encryption -- Inner-Product

$$f(\boldsymbol{x}, \boldsymbol{y}) = <\boldsymbol{x}, \boldsymbol{y} > = \sum_{i=1}^{n} (x_i \cdot y_i)$$

Abdalla, Michel, et al. "Simple functional encryption schemes for inner products." IACR International Workshop on Public Key Cryptography (PKC 2015). Springer, Berlin, Heidelberg, 2015.

Monday, July 8, 2019

Goal:

The Laboratory for Education and Research on Security Assured Information Systems (LERSAIS)

Secure Matrix Computation

Two Parties

Two Parties
$$X_{l \times n}, Y_{n \times m}$$
, s.t. $n > m$ Alice $\begin{bmatrix} x_{11} & \cdots & x_{1n} \\ \vdots & \ddots & \vdots \\ x_{l1} & \cdots & x_{ln} \end{bmatrix}$ $ct_1 \leftarrow enc(x_1)$ $X_{l \times n}$ $enc(X) = (ct_1, \dots, ct_l)$ $dec(ct_1, sk_{f_1})$ Bob $\begin{bmatrix} y_{11} & \cdots & y_{1m} \\ \vdots & \ddots & \vdots \\ y_{n1} & \cdots & y_{nm} \end{bmatrix}$ $sk_{f,Y} = (sk_{f_1}, \dots, sk_{f_m})$ Decryption $Sk_{f_1} & sk_{f_m}$ $XY_{l \times m}$

Neural Networks - Gradient Descent

feed-forward

$$\begin{split} A^{[1]} &= g(Z^{[1]}), Z^{[1]} = W^{[1]}X + b^{[1]} \\ A^{[2]} &= g(Z^{[2]}), Z^{[2]} = W^{[2]}A^{[1]} + b^{[2]} \\ \dots \dots \\ A^{[l-1]} &= g(Z^{[l-1]}), Z^{[l-1]} = W^{[l-1]}A^{[l-2]} + b^{[l-1]} \\ A^{[l]} &= g(Z^{[l]}), Z^{[l]} = W^{[l]}A^{[l-1]} + b^{[l]} \\ \widehat{Y} &= A^{[l]} \\ E &= \frac{1}{n} \sum_{i}^{n} (\widehat{y}^{(i)} - y^{(i)})^{2} \qquad g(z) = \frac{1}{1 + e^{-z}} \\ W^{[l]} &= W^{[l]} - \alpha \frac{\partial E}{\partial W^{[l]}} \\ &= \frac{\partial E}{\partial W^{[l]}} = \frac{\partial E}{\partial A^{[l]}} \frac{\partial A}{\partial Z^{[l]}} \frac{\partial Z}{\partial W^{[l]}} \\ &= \frac{\partial Z}{\partial W^{[l]}} = A^{[l-1]}, \frac{\partial Z}{\partial Z^{[l]}} = A^{[l]} (1 - A^{[l]}), \frac{\partial Z}{\partial Z^{[l]}} = A^{[l]} - Y \end{split}$$

Neural Networks meet Functional Encryption

feed-forward

CryptoNN – Framework Overview

Experimental Evaluation

- Prototype Implementation
 - A scratch implementation of LeNet-5 in Python
 - FE scheme implementation
 - Charm-crypto (Python) underlying numerical calculations rely on GMP library (C)
- Test platform
 - Intel Core i7/16GB/macOS

Experimental Evaluation

Time cost of dot-product in secure matrix computation

Experimental Evaluation

model	epoch 1 (acc)	epoch 2 (acc)	training time
LeNet-5	93.04%	95.48%	4h
CryptoCNN	93.12%	95.49%	57h

LetNet-5 Neural Networks MNIST dataset 60000 training / 10000 test Hyper Parameters Setting Float Point Precision Setting: 2 -- the # of bits used after the decimal point of a floating point number -- encoding floating point number → integer number Bath Size: 64

Learning Rate: 5e-4

Comparing to baseline:

- -- achieving similar average batch accuracy
- -- costing about 14 times training time

Note this is result of submitted version. In our follow-up work, we have an efficient implementation of decryption : $X^{1\times 25} \cdot Y^{25\times 1}$ from 40s \rightarrow 0.2ms

Summary

CryptoNN framework

- Secure multiparty computation based on FE
- CryptoNN framework
- Concrete instance, CryptoCNN
- Evaluation Results
- Future work
 - More efficient approaches
 - Prevent intermediate model inference attack
 - Other NN architecture

Thanks

Q & A

Monday, July 8, 2019