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Background

Cloud-based ML Service
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Choose ML Alg

~—>[ ML Alg

rb Cloud
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Collect Data

Training Phase
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Prediction Phase

Special Scenario, e.g., Small Clinics - Computer Aided Diagnostic Application

Challenges

Limited IT infrastructure and Al resources/experts

V.S.

Privacy-sensitive data — e.g., patients’ electronic healthcare records

e —
[

How to train a ML model without leaking privacy-sensitive data using cloud-based ML service ?
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Background

How existing privacy-preserving ML approaches work in cloud-based service

Client rb Cloud Client

EGC—SMC
Choose ML Alg ——>| ML Alg ]\

" Training Phase —>-—> Prediction Phase 4——-3
- GC-SMC

Privacy-Preserving Approaches

¢ Noise Addition
o Differential Privacy, e.g., deep learning with differential privacy.

¢ Secure Multiparty Computation (SMC)
o “non-crypto” based approach — garbled circuit (GC) + oblivious transfer (OT), e.g., DeepSecure, etc.
o ‘“crypto” based approach — homomorphic encryption (HE), e.g., CryptoNets, etc.

Collect Data
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Background

Adoption of Privacy-Preserving Approaches in ML Cloud : Trade-off Issue

*¢* Noise Addition
o Differential Privacy

¢ Secure Multiparty Computation (SMC)

O

O

“non-crypto” based approach — GC + OT

“crypto” based approach — HE

trade-off : privacy v.s. utility

trade-off : computation v.s. transmission
require large transmission volume

require higher computation time
--only support prediction phase



Comparison of Privacy-preserving ML Approaches

COMPARISON OF PRIVACY-PRESERVING APPROACHES IN MACHINE LEARNING MODELS

Proposed Work Training  Prediction |Privacy | ML Model Approach

Privacy-Preserving Deep Learning (CCS) [7] ) o O Deep Learning Distributed*

Deep Learning with differential privacy (CCS) [8] ° o O Deep Learning Differential Privacy®

CryptoML [4] ) ° D Matrix-based ML Delegation®

SecureML [6] ° ° D General Secure Protocol (SMC)
DeepSecure [5] ° ° d Deep Learning Secure Protocol (Garbled Circuits)
CryptoNets [3], [9], [10], [11], [12], [13], [14], [15] o ° o Covers All Homomorphic Encryption (HE)
ML classication over encrypted data (NDSS) [2] o ° () Limited MLT HE + Secure Protocol

CryptoNN (our work) ° ° () Neural Networks  Functional Encryption

> This column indicates the privacy strength/guarantee such as mild approach O (e.g. differential privacy) and strong guarantee @ (e.g. crypto system).
T It only supports Hyperplane Decision, Nave Bayes, and Decision Trees models.

1 The data owner trains the model by itself and outsources partial computation in a privacy-preserving setting.

* The model is trained in a distributed manner where each data owner trains a partial model on their private data.

¢ It applies differential privacy method on the training data.

Monday, July 8, 2019 The Laboratory for Education and Research on Security Assured Information Systems (LERSAIS) 4



CryptoNN in Cloud-based ML Service

How CryptoNN works in cloud-based ML service
Cloud/Server based ML (as a Service) -- Clients

Client Efb Cloud Client
5 FE based approach

Garbled
Choose ML Alg —>[ ML Alg Label
Phase

Prediction _-
Phase

| &

Collect data
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HE based approach

o
e
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Functional Encryption

In traditional encryptions scheme, decryption algorithm reveals all or nothing

In FE, for a function f(-), the decryption key sk only reveals partial
information, i.e., f(x) instead of x.

m S1: Setting up, pk + msk, deliver pk and hold msk
S4: Generate sky using msk

Alice

S2: Encryption x — enc(pk, x) S3: Request private key skf from TPA

S5: Decryption: dec(enc(pk, x),skf) — f(x)



Functional Encryption -- Inner-Product

fx,y) =<x,y>= Z(xi * Vi)
i=1

TPA  setup(1%,17) - pk + msk
Alice has x, and Box has y. m key derive(y, msk) — sk,
Goal: Skr
Let Bob know the result of f(x, y), s~ i S Yool
but is not able to learn x. pk |
ct
enc(x,pk) — ct dec(ct, Skf) - f(x,y)

Abdalla, Michel, et al. "Simple functional encryption schemes for inner products.” IACR International Workshop on Public Key Cryptography (PKC
2015). Springer, Berlin, Heidelberg, 2015.



Secure Matrix Computation

Two Parties Xisxn Youxm, St.n>m
[¥11  *° Xin] cty < enc(xq)
Alice { . ' .
X1 vt Xl o oty < enc(xp) |
dec(cty, sky,)
Xlxn :
enC(X) — (Ctll )Ctl) : dec(ctl Skf )
1 ) m
______________________________________________________________ .:r____ JV
Y11 V1 Decryption Z11 24
Bob I m Skf,Y = (Skf1’ "Skfm) .. m]
Yn1 Ynm Computation Z;p ‘_dBC(Ctz;Skfm)
sk k
f1 SKf
" XY 1m
Ynxm
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Neural Networks - Gradient Descent

feed-forward
Al = gz, z= witlx + plt]
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Neural Networks meet Functional Encryption

feed-forward

: A[l] — g(Z[l])’ Z[l]z W[l]X
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back-propagation cost evaluation

X Wil w2l Wl wll
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CryptoNN — Framework Overview

@ Input Layer
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Secure Feed-forward

Normal Feed-forward
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Experimental Evaluation

 Prototype Implementation
« A scratch implementation of LeNet-5 in Python

 FE scheme implementation
« Charm-crypto (Python) — underlying numerical calculations rely on GMP library (C)

 Test platform
e Intel Core i7/16GB/macOS

C3: f. maps 16@10x10
C1: feature maps S4: . maps 16@5x5

6@28x28 ]
S2: f. maps C5: layer F6: layer OUTPUT
84 10

A [~

INPUT
32x32

| Full coanection ‘ Gaussian connections
Convolutions Subsampling Convolutions ~ Subsampling Full connection
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Experimental Evaluation

Time cost of dot-product in secure matrix computation

251

pre-process encryption time (s)

201

154

104

1=10, v=[1,10]

1=10, v=[1,100]

1=100, v=[1,10] L~
1=100, v=[1,100] ~

T

# dot-product (k)

(a) pre-processing for encryption

x-axis: the element size
y-axis: the computing time
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pre-process key-drive time (s)

(b) pre-processing for function key
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(c) secure dot-product computation (d) secure dot-product (parallelized)

e.g., one intuitive result

b
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(x1, %2, -, X10) . |
(Y1, V2, 0r Y10) x,y:100 - 7-8 seconds (parallelized)
J
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Experimental Evaluation

1.0 -
a ‘\! /I!I.\./ \ ,// \ "\. A (A)I-
i :f‘ ‘\I’\ /“ X MN
n ! I ‘. /
> a VAl
O P l‘ ! i \\II
cos Y A
0 A M
9 !V xh
c {
S07{ &
© 1
Q0 II:
(0] A
()] I
© 061 ||
Q ',,
® i
05] |
I
I
/ -#4- avg acc (LeNet-5)
041 & -#- avg acc (CryptoNN)
30 35

0 5 10 15 20 25
# iteration (50 batch)

training time

model epoch 1 (acc) epoch 2 (acc)
LeNet-5 93.04% 95.48% 4h
CryptoCNN  93.12% 95.49% 57h
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LetNet-5 Neural Networks

IST dataset

60000 training / 10000 test
Hyper Parameters Setting

Float Point Precision Setting: 2
-- the # of bits used after the decimal point of a floating point number

-- encoding floating point number = integer number

Bath Size: 64
Learning Rate: 5e-4

Comparing to baseline:
-- achieving similar average batch accuracy

-- costing about 14 times training time

Note this is result of submitted version.
In our follow-up work, we have an efficient implementation of

decryption : X125 . y25%1 from 40s > 0.2ms

tion and Research on Security Assured Information Systems (LERSAIS)
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Summary

* CryptoNN framework
« Secure multiparty computation based on FE
* CryptoNN framework

» Concrete instance, CryptoCNN
» Evaluation Results

* Future work
* More efficient approaches

* Prevent intermediate model inference attack
 Other NN architecture
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