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Abstract. Self-protection capabilities of outsourced data become note-
worthily important in cloud computing. Ciphertext-Policy Attribute Bas-
ed Encryption (CP-ABE) can dynamically control the user group of the
encrypted data by defining decryption attributes; hence has certain abil-
ity of access control. Although there are different schemes of CP-ABE,
as far as we know, most of these schemes can only express simple poli-
cies with AND, OR and threshold attribute operations, which cannot
support traditional access control policies. In order to effectively inte-
grate access control with encryption to build a self-contained data protec-
tion mechanism, this paper proposed an Extended CP-ABE(ECP-ABE)
scheme based on the existing CP-ABE scheme. The ECP-ABE scheme
can express any Attribute Based Access Control (ABAC) policies rep-
resented by arithmetic comparison and logical expressions that involve
NOT,<,≤, >,≥, [ ], ( ), ( ] and [ ) operators in addition to AND, OR and
threshold operators. We prove the Chosen-plaintext Attack (CPA) secu-
rity of our scheme under the Decisional Bilinear Diffie-Hellman (DBDH)
assumption in the standard model, and also discuss the experimental
results of the efficiency of ECP-ABE.

Keywords: self-contained data protection, ciphertext-policy attribute
based encryption (CP-ABE), extended CP-ABE, attribute based access
control, cloud computing

1 Introduction

In open computing environment such as cloud computing, the protection mecha-
nism of outsourced data (sometimes just simply called data) attracts much more
attentions [1, 2]. These data departs from the control domain of its owner and is
stored and managed by unreliable service providers. Hence, the self-protection
capabilities of data become very important. Traditionally, access control and
encryption are the two basic protection mechanisms for achieving data integrity
and confidentiality. Self-contained protection of data means that data itself can
ensure its integrity and confidentiality without depending on other parties.
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Data encryption is the primary data self-protection means at present. Tra-
ditional Public-Key encryption and Identity Based Encryption schemes [3] are
designed for one-to-one communication, which means the information encrypted
by a public key or identity can only be decrypted by the specific private key.
This situation has been changed since Sahai and Waters proposed the Attribute
Based Encryption scheme [4], where ciphertexts are not necessarily encrypted to
one particular user. Both users private keys and ciphertexts are associated with
a set of attributes or a policy over attributes. When the attributes of a users
private key can match the attributes of the ciphertext in a certain extent, the
user can be able to decrypt the ciphertext. By defining decryption attributes,
ABE can dynamically control the user group of the encrypted data.

Goyal et al. further developed this idea and introduced two variants of ABE,
namely key-policy attribute based encryption(KP-ABE) and ciphertext-policy
attribute based encryption(CP-ABE). In KP-ABE, whose first construction is
given by [5], ciphertext is associated with a set of attributes and the secret key
is associated with the access tree. A user will be able to decrypt if and only if
the attributes in the ciphertext satisfy his access tree. In CP-ABE, the idea is
reversed. The ciphertext is associated with the access tree and the secret key
is associated with a set of attributes, and the encrypting party determines the
decryption policy.

Bethencourt et al[6] gave the initial structure of CP-ABE. We refer to this
scheme as BSW07 in this paper. BSW07 is relatively expressive and efficient,
but the security argument is based on generic group model, an artificial model
which assumes the attacker needs to access an oracle in order to perform any
group operation. After that, many researchers have presented different schemes
for the less ideal security argument, trying to prove the security based on a well-
studied complexity-theoretic problem. And also there are many people worked at
improving the efficiency or the flexibility of access policy for the CP-ABE scheme.
These schemes mainly support three kinds of access policy structures: AND-
gates, tree structure and Linear Secret Share Scheme (LSSS) matrix. Among
them, the tree structure and LSSS matrix are relatively flexible, which supports
AND, OR and threshold operation. BSW07 uses bag of bits to express policies
containing <,≤, >,≥. However, this approach is much complex and has poor
scalability, and is hard to be used in practical applications. For NOT operator,
BSW07 has no solution. To the best of our knowledge, there is no efficient way to
express an access policy that contains operators such as NOT,<,≤, > and ≥ in
present CP-ABE schemes, which makes CP-ABE only support simple attribute
policies.

Access control and encryption are the two key techniques in data-centric
protection, and CP-ABE makes it possible to integrate these two techniques
seamlessly. However, the limited access policy expression in CP-ABE restricts
its access control capability.

Our contribution. In the area of access control, Attribute-based Access Control
(ABAC) model [7–9] makes access control decisions based on user attributes. The
policies in ABAC are defined as attribute expressions that contain attributes,
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constants, and AND,OR,NOT,<,≤, >,≥, [ ], ( ), ( ] and [ ) operators, and can
express complex access control rules. If the access policy structure of CP-ABE
can be enhanced to express complex attribute policies as ABAC, CP-ABE will
become an ideal scheme for implementing data self-protection in open computing
environments. Following this idea, we proposed the Extended CP-ABE scheme
(ECP-ABE). In ECP-ABE, by introducing extended leaf nodes, the access tree
of CP-ABE is enhanced to support all kinds of logical and arithmetic comparison
operators, including <,≤, >,≥, NOT, [ ], ( ), ( ] and [ ). Therefore, ECP-ABE
can realize powerful access control as well as encryption, and data processed
by ECP-ABE will have strong self-protection capabilities. Our scheme is proven
to be chosen plaintext attack(CPA) secure under the decisional Bilinear Diffie-
Hellman (DBDH) assumption in the standard model.
Organization. The remaining sections are organized as follows. In Section 2, we
introduce related work. In Section 3, we review the preliminaries. We present our
extended CP-ABE (ECP-ABE) scheme in Section 4, and give an implementation
framework of ECP-ABE in Section 5. We then discuss the performance of ECP-
ABE from aspects of security and efficiency in Section 6. Finally, we conclude
this paper in Section 7.

2 Related Work

BSW07 expresses the access policy by a tree structure which supports AND, OR
and threshold operations. At the same time, the length of the ciphertext and the
encryption or decryption time are linearly related with the number of attributes
of the access structure tree. However, the security proof of BSW07 is based on
generic group model, rather than the standard numerical theoretical assump-
tions. In addition, as a result of using polynomial interpolation to resume secret
during the decryption phase, BSW07 needs greater number of bilinear mapping
and exponentiation operation, and costs of these operations are relatively high.

After that many scholars have proposed different schemes [10]. Cheung and
Newport first gave the CP-ABE scheme (CN07)[11] under CPA security based
on DBDH assumption. However, the scheme only have the AND and NOT op-
erator in the access policy structure, and the ability of policy expression is poor.
Moreover, the length of the ciphertext and the key, and the time of encryption
or decryption are linearly related with the number of attributes, which lead to
the lower efficiency. Goyal et al raised the Bounded Ciphertext Policy Attribute
Based Encryption scheme[12] based on DBDH assumption, which supported the
AND,OR and threshold operations.

Nishide gave an Attribute-Based encryption scheme [13] with partially hidden
encryptor-specified access structures, which only supported the AND operation
and attributes have more than one candidate value. Emura et al first raised the
CP-ABE with constant ciphertext length based on Nishide’s scheme [14], which
improved the efficiency of the algorithm. But it also just supported the AND
operation. Ibraimi et al gave an efficient and provable secure CP-ABE scheme
[15] based on DBDH assumption using the threshold secret share technology
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[16], which supported AND, OR and threshold operations. Its access structure
was an n-tree and the costs of key generation, encryption and decryption are
lower than the BSW07 scheme. Waters has used the LSSS matrix to express the
access control policy and pointed out that the ability of expression is not lower
than the tree structure[17].

In order to support complex Boolean access policies, Junod and Karlov[18]
proposed an efficient public-key ABBE scheme allowing arbitrary access poli-
cies, which is based on a modification of the Boneh-Gentry-Waters broadcast
encryption scheme. Chen et al[19] presented two new CP-ABE schemes, which
have both constant-size and constant computation costs for a non-monotone
AND gate policy. Jin et al[20] enhanced the attribute-based encryption with
attribute hierarchy and obtain a provable secure HABE under tree hierarchy.
Attrapadung et al[21, 22] proposed the first KP-ABE schemes allowing for non-
monotonic access structures and with constant ciphertext size. Zhiguo et al[23]
proposed a hierarchical attribute-set-based encryption (HASBE) scheme which
extended the ciphertext-policy attribute-set-based encryption for access control
in cloud computing.

From the view of security and expressive ability of access policy, only the W08
and ITHJ09 scheme supported the AND, OR and threshold operation under the
theoretical assumptions of the standard numerical. And the computation cost of
encryption and decryption of ITHJ09 is lower than W08’s. Therefore, we choose
ITHJ09 as the basic CP-ABE scheme, and further expand the access policy tree
of ITHJ09 to construct an Extended CP-ABE scheme.

3 Preliminaries

3.1 Access Tree

Definition 1. (Access Tree[6]). Let τ be a tree representing a kind of Access
Structure[24]. Each non-leaf node of the tree represents a threshold gate, de-
scribed by its children and a threshold value. If numx is the number of children
of a node x and kx is its threshold value, then 0 < kx < numx. When kx = 1,
the threshold gate is an OR gate and when kx = numx, it is an AND gate. Each
leaf node x of the tree is described by an attribute and a threshold value kx = 1.

We define tree functions over the tree. The function parent(x) represents the
parent of node x. If x is a leaf node, we define the function attr(x) to denote
the attribute with the leaf node. As the access tree has an ordering between the
children of every node, the function index(x) represents the index number of
each child node.

Definition 2. (Satisfied Access Tree[6]). Let τ be an access tree with root
r. Denote by τx the subtree of τ rooted at the node x. Thus, τ is the same as
τr. If a set of attributes γ satisfies the access tree τx, we denote it as τx(γ) = 1.
We compute τx(γ) recursively as follows. If x is a non-leaf node, evaluate τx′(γ)
for all children x′ of node x. τx(γ) returns 1 if and only if at least kx children
return 1. If x is a leaf node, then τx(γ) returns 1 if and only if att(x)∈ γ.
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3.2 CP-ABE Algorithms

The ciphertext-policy attribute based encryption scheme consists of four funda-
mental algorithms [6]: Setup, Encrypt, Key Generation, and Decrypt.

• Setup (k). The setup algorithm takes no input other than the security
parameter k. It outputs the public parameters PK and a master key MK.

• Key-Generation (MK,S). The key generation algorithm takes as input
the master key MK and a set of attributes S that describe the key. It outputs
a private key SK.

• Encrypt (PK,M,A). The encryption algorithm takes as input the public
parameters PK, a message M , and an access structure A over the universe
of attributes. The algorithm will encrypt M and produce a ciphertext CT
such that only a user that possesses a set of attributes that satisfies the
access structure will be able to decrypt the message. We will assume that
the ciphertext implicitly contains A.

• Decrypt (PK,CT , SK). The decryption algorithm takes as input the public
parameters PK, a ciphertext CT which contains an access policy A, and a
private key SK. If the set S of attributes satisfies the access structure A then
the algorithm will decrypt the ciphertext and return a message M , otherwise
return the error symbol ⊥.

4 ECP-ABE Scheme

The ITHJ09 used Shamir secret sharing technique to support AND, OR and
of (threshold) nodes based on CP-ABE scheme. The access policy tree is n-ary
tree. Each node has two attributes: the number of child nodes n and threshold
value t(1 ≤ t ≤ n). When t = 1, it’s an OR gate; when t = n, it’s an AND
gate; when 1 < t < n, it’s an of gate. The leaf node associates policy properties
and its value t is 1. The ECP-ABE scheme we proposed is based on the ITHJ09
scheme and we extend the access tree to make it be able to express the complex
policies that contain arithmetic and logical expressions.

4.1 Extended Leaf Node

The universal attribute set U is published by the Trusted Authority. Each user
has his or her attribute set w which is used for key generation and we refer to
it as the basic attribute set. In Attribute Based Access Control system, user’s
access right could be dynamically calculated according to his security character
and the resource he applied for. Inspired by this, we extend the leaf node of the
access policy tree.

We replace the original leaf node with the operator node and give it two
children, which we refer to as the attribute name node and the attribute
value node , as shown in Fig.1(a). The operator node , the attribute name
node and the attribute value node compose an extended leaf node , and the
attribute expression described by an extended leaf node is called an extended
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(a) Extended access tree (b) Example of extended leaf node

Fig. 1: Extend access tree.

attribute, for instance, the attribute “age>18” is an extended attribute. Mean-
while, the range of threshold value t of the extended leaf node is less than 0 from
the original value 1.

The operator node only has the threshold value t(t < 0). Different value of
t denotes specific operator, for instance, t = −1 for NOT operator, t = −2
for > operator. The attribute name/value node denotes the attribute name and
the attribute value respectively that are associated with the operator. With this
structure, we can express policy attributes using operators of NOT,<,≤, >,≥
, [ ], ( ), ( ] and [ ). Fig.1(b) is an example of this structure, which express the
policy attribute school not software-engineering.

ECP-ABE scheme augments two kinds of operators: comparison operators
and logic operators.

• Comparison operators: <,≤, >,≥.
• Interval operators: [ ], ( ), ( ], [ ).
• Logic operators: not.

The values of t and the corresponding operator that each value represents are
defined in Tab.1.

Table 1: Values of t and its corresponding operator.

Value t -1 -2 -3 -4 -5 -6 -7 -8 -9

Operator not < > ≤ ≥ [ ] ( ) ( ] [ )

4.2 Transforming an Extended Policy Tree to a Standard Tree

Now we define the extended policy tree as the extended tree T ∗ and the original
tree is called the standard tree T . An extended tree can be transformed to an
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(a) An extended policy tree T ∗ (b) The standard policy tree T cor-
responding to T ∗ in Fig.2a

Fig. 2: Examples of extended and standard access policy tree.

equivalent standard tree by removing the attribute name/value node, converting
the operator node to the standard leaf node and then assigning the attribute
expression described by the extended leaf node as an extended attribute to the
standard leaf node. The extended tree T ∗ and the standard tree T express the
same access policy. For example, the extended tree in Fig.2a can be transferred
into the standard tree in Fig.2b.

The user expresses the access policy using the extended tree and makes it
the parameter for the encryption. The encryption algorithm will firstly trans-
form the extended tree to a standard tree, and then encrypts the message using
the standard access policy tree. Finally, we attach the extended tree in the ci-
phertext.

To decrypt the ciphertext, the decryption party needs to apply the secret key
by giving PKG his basic attribute set and the extended parts of the access tree.
At the PKG side, we use the attribute verification algorithm as shown in
Alg.1 to verify and transform an extended leaf node. This algorithm will first get
user’s basic attribute set and then traverse the attribute set to check whether
or not the attribute N satisfies the expression exp(N.O.V). If the answer is yes,
it returns the string form of exp(N.O.V), i.e. “attribute name operator attribute
value” which is regarded as an extended attribute of the user. Otherwise it will
return null.

Here is an example of the transformation.
There is a file F in a campus network system and the file has an access policy:

“It can be accessed if and only if the user is a teacher under age of 40 or an older
than 18-year-old student who is not in school of software-engineering”. So, we
can give the policy “T ∗ = (student∧ schoolnotsoftware− engineering ∧ age >
18)∨ (teacher∧age < 40)”, and the extended access tree for this policy is shown
in Fig.2(a). Fig.2(b) is the standard access tree which converts from the extended
tree in Fig.2(a). The encryption party encrypts the file F with T and attaches
T ∗ in the ciphertext.
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ALGORITHM 1: Attribute Verification

1 Get the expression exp(N.O.V) of the extended leaf node, where N,O and
V denote the basic attribute name, the operator array and the attribute
value array respectively;

2 Traverse the basic attribute set A’ to find the basic attribute N and its
value V’ ;

3 Let Osize be the size of the array O , Vsize be the size of the array V ;
4 if Osize == 1 && Vsize == 1
5 Let N=V’ , calculate the boolean expression N.O[1].V[1];
6 if the value of the expression is true
7 Convert exp(N.O.V) to string S=N.O[1].V[1];
8 return S ;
9 else
10 return null;
11 end if
12 else if Osize == 2 && Vsize == 2
13 Let N=V’ , calculate the boolean expression V[1].O[1].N.O[2].V[2];
14 if the value of the expression is true
15 Convert exp(N.O.V) to string S=V[1].O[1].N.O[2].V[2];
16 return S ;
17 else
18 return null;
19 end if
20 else
21 return null;
22 end if

Suppose user A and user B wants to decrypt the file F. The basic attributes
of A is {student, school=computer science, age=20}, and the basic attributes of
B is {student, school=computer science, age=17}. Firstly, Both A and B need
to extract the extended parts of T ∗ from the ciphertext and send them with
their basic attribute set to PKG. Then, PKG verifies and generates the new
attribute set {student, school not software-engineering, age<18} for A, and the
new attribute set {student,school not software-engineering, age=17} for B. The
corresponding private keys are generated using these new attribute sets by PGK
concurrently. Obviously, the attribute set of user B doesn’t satisfy the access
policy, hence user A can decrypt the file F while user B can’t.

4.3 Encryption and Decryption Process of ECP-ABE

The encryption party expresses the access policy with an extended tree and the
tree in the ciphertext is also in the extended structure. However, when encrypts
a message, the encryption algorithm will first transform the extend tree to an
equivalent standard tree and encrypt the message using the standard one. So
in the encryption phase, we can use the algorithm of ITHJ09 scheme. For ci-
phertexts that encrypted under different extended access trees, users have to
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apply for different secret keys, since PKG need to verify and generate extended
attributes according to the extended tree and user’s basic attributes. Detailed
encryption and decryption processes are described as follows.

a. Initialize: the system initializes and generates public parameter pk and
master key mk. It gives pk to the encryption party. The description of ini-
tialization algorithm Setup (k) is as follow.

i. Generate a bilinear group G of prime order p with a generator g and a
bilinear map e : G×G→ GT .

ii. Generate the attribute set U = {a1, a2, . . . , am}, for some integer m, and
random elements α, t1, t2, . . . , tm ∈ Z∗p . Let y = e(g, g)α, Tj = gtj (1 ≤
j ≤ m). The public key is pk = {e, g, y, Tj(1 ≤ j ≤ m)}, and the master
key is mk = (α, tj(1 ≤ j ≤ m)).

b. Specify the access policy: the encryption party specifies access policy,
which is expressed by an extended tree T ∗.

c. Encryption: the encryption party calls the encryption algorithm Encrypt
(m, T ∗, pk) with plaintext m, the extended tree T ∗ and the public param-
eter pk. The encryption algorithm will first transform T ∗ to the equivalent
standard tree T, and then encrypt m under T using Shamir’s secret sharing
technique. Finally it returns the ciphertext CT which contains T ∗, such that
only users who have the secret key generated from the attributes that satisfy
T ∗ will be able to decrypt the message. The detail description is as follows:

i. Convert the T ∗ to the standard tree T ;
ii. Select a random element s ∈ Z∗p and compute c0 = gs and c1 = M · ys =

M · e(g, g)αs;
iii. Set the value of the root node of T to be s, mark all child nodes as

un-assigned, and mark the root node assigned. Recursively, for each un-
assigned non-leaf node, do the following:
If its child nodes are un-assignedthe secret s is divided using (t,n)-Shamir
secret sharing technique. The relation of n and t is: if the symbol is of
then 1 ≤ t ≤ n; if the symbol is AND, then t = n; if the symbol is
OR, then t = 1. To each child node a share secret si = f(i) is assigned.
Mark this node assigned.The function f(x) is the random polynomial

over Zp:f(x) =
∑t−1
j=0 ajx

j .
iv. For each leaf attribute aj,i ∈ T , compute cj,i = T sij , where i denote the

index of the attribute in the access tree.
v. Return the ciphertext: CT = (T, c0, c1,∀aj,i ∈ T : cj,i).

d. Secret key request: when a user gets CT and wants to decrypt, he first
needs to analyze the structure of T ∗ and find the extended parts, then apply
for the secret key by giving PKG his basic attribute set w and the extended
parts of the access tree.

e. Secret key generation: PKG first verify the user’s basic attribute. If the
basic attributes of the user are authenticated, PKG will extract the attribute
name, the attribute value and the operator, and run Alg.1. Attributes in w
that satisfy the extended leaf node will be replaced by the returned extended
attributes. Finally PKG gets the new attribute set w∗ and generates the
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secret key skw∗ corresponds to w∗ and sends it back to the user. The detailed
description is as follows:

i. Select a random value r ∈ Z∗p , d0 = gα−r.

ii. For each attribute aj in w, compute dj = grt
−1
j .

iii. Return the secret key skw = (d0,∀aj ∈ w : dj).
f. Decryption: the user calls the decryption algorithm Decrypt(CT , skw∗).

The algorithm returns message m if the smallest attribute set w ∈ w∗ that
corresponds to skw∗ satisfies T . Otherwise it returns an error symbol ⊥.
More details are as follows:
For every attribute aj ∈ w′, computing:

m =
c1

e(c0, d0) ·
∏
aj∈w′ e(cj,i, dj)

li(0)
(1)

li(0) is a Lagrange coefficient and can be computed by everyone who knows
the index of the attribute in the access tree.

Proof. Correctness.

m′ =
c1

e(c0, d0) ·
∏
aj∈w′ e(cj,i, dj)

li(0)

=
m · e(g, g)αs

e(gs, gα−r) · e(T sij , grt
−1
i )li(0)

=
m · e(g, g)αs

e(gs, gα−r) ·
∏
aj∈w′ e(g

tjsi , grt
−1
i )li(0)

=
m · e(g, g)αs

e(gs, gα−r) · e(g, g)rs

=
m · e(g, g)αs

e(gs, gα)
= m

(2)

5 ECP-ABE Implementation Framework

The ECP-ABE scheme can be used to protect data which is owned by enter-
prises and collaborative groups and is stored in a cloud. Building a practical
and efficient ECP-ABE implementation mechanism is meaningful for these ap-
plications. The typical CP-ABE scheme has three basic components, which are
PKG Server, Encryption party and Decryption party. In our proposed ECP-
ABE implementation framework, we introduce the Attribute Authority (AA) to
relieve the burdens of PKG and avoid the efficiency bottlenecks. Our ECP-ABE
implementation framework is shown in Fig.3, and the framework has four main
components:

• PKG, which generates ABE private keys for users based on the attributes
submitted.

• AA, which authenticates user’s identity and verify the user’s attribute set.
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Fig. 3: The implementation framework of ECP-ABE.

• Encrypt party, which encrypts a file.
• Decrypt party, which decrypts a ciphertext to get the original file.

In order to realize the integral data protection, the framework synthetically uses
ECP-ABE, IBE and AES scheme. Among the three schemes, the AES symmetric
encryption algorithm is used to encrypt the data file, and the key of AES is
encrypted by ECP-ABE, while IBE provides the signature verification for the
communications in the process of ECP-ABE private key distribution.

The file encryption process is achieved in the Encrypt Party of the framework,
as shown in Fig.4a. Firstly, the user signs the file by IBE module to ensure data

(a) Encryption sequence dia-
gram of ECP-ABE implementa-
tion mechanism.

(b) Decryption sequence diagram of ECP-ABE
implementation mechanism.

Fig. 4: Encryption/Decryption process in ECP-ABE Implementation framework.
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integrity. And then, it uses the AES symmetric encryption algorithm to encrypt
the data file. The AES key is encrypted by ECP-ABE module with the extended
access policy tree. At last, the Encrypt party puts the signature file, the ECP-
ABE ciphertext, the data file ciphertext and the access policy file together and
forms a final ciphertext.

The file decryption process is achieved in the Decrypt Party of the framework,
as shown in Fig.4b. Firstly, the decrypt party parses the ciphertext and gets
every part of the ciphertext. Then, it extracts the extended leaf nodes from the
access policy tree and sends them to the AA with the ID of the user. The AA
authenticates the user and verifies the extended leaf nodes using user ID and
sends the new attribute set to PKG. PKG generates the ECP-ABE private key
and sign it using IBE and returns it back. The decrypt party decrypts and verifies
the IBE ciphertext, gets the ECP-ABE private key. Then, the AES key can be
decrypted from the ECP-ABE ciphertext and the original data file is decrypted.
At last, the decrypt party signed the data file using IBE and then compare
signature with the original signature to verify if the file has been tampered.

6 ECP-ABE Performance Analysis

6.1 Security

The major contribution of ECP-ABE scheme is the extension of the access tree.
The core encryption/decryption algorithm of ECP-ABE is based on ITHJ09
scheme. In ITHJ09 scheme semantic security under chosen-plaintext attack (C-
PA) is modeled by IND-sAtt-CPA game. The security model of ECP-ABE will
still be based on IND-sAtt-CPA game, but the challenging access tree provided
by the adversary in Init phase will be an extended tree instead of a standard
tree. IND-sAtt-CPA game of ECP-ABE security model is as follows:

• Init. The adversary A chooses the challenge access tree T ∗ and gives it to
the challenger, T ∗ is an extended tree.

• Setup. The challenger runs Setup to generate(pk,mk) and gives the public
key pk to adversary A. The challenger also transforms T ∗ to the equivalent
standard tree T.

• Phase1. Adversary A makes a secret key request to the Keygen oracle for
any attribute set w = {aj |aj ∈ U}, with the restriction aj ∈ T ∗ and aj does
not satisfy the policy attribute requirement expressed by the extend part
of T ∗. The challenger runs Alg.1 to generate extended attribute set w∗ and
then returns Keygen(w∗,mk).

• Challenge. Adversary A sends to the challenger two equal length mes-
sages m0,m1. The challenger picks a random bit b ∈ 0, 1 and returns cb =
Encrypt(mb, T

∗, pk).
• Phase2. Adversary A can continue querying Keygen oracle with the same

restriction as in Phase1.
• Guess. Adversary A outputs a guess b′ ∈ 0, 1.
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The advantage of A winning this game is defined as:

ε = |Pr[b′ = b]− 1/2|. (3)

Definition 3. We say that the(t, ε)-DBDH assumption[4, 25] holds if no t-time
algorithm has advantage at least ε in solving the DBDH problem in G0.

Definition 4. ECP-ABE scheme is said to be secure against an adaptive chosen-
plaintext attack(CPA) in the standard model if any polynomial-time adversary
has only a negligible advantage in the above IND-sAtt-CPA game.

In the above game, adversary A uses an extended tree to challenge instead of a
standard tree. We have the following analyse:

• The limitation for the basic attribute set w = {aj |aj ∈ U} provided by ad-
versary A in Phase1 is aj /∈ T ∗ and aj does not satisfy the policy attribute
requirement expressed by the extended part of T ∗. According to this limi-
tation, we can infer that ∀b∗j ∈ w∗, b∗j /∈ T . So in Phase1, changes of access
tree will not introduce any new security problem, i.e. the secret key that A
gets could not decrypt the ciphertext cb.

• Although adversary A submits the extended tree T ∗ in Init phase, message
mb is encrypted under standard tree T. Transformation between T ∗ and T
is public. In Phase1, Challenge and Phase2, adversary A could design the
query and challenge against T ∗. So the attacking ability of A keeps the same.

Hence, we can conclude that in ECP-ABE scheme the advantage of A in the
IND-sAtt-CPA game equals to the advantage of A in ITHJ09 scheme, i.e. in ECP-
ABE scheme any polynomial-time adversary has only a negligible advantage in
the IND-sAtt-CPA game.

So ECP-ABE scheme is secure against an adaptive CPA in the standard mod-
el. Our extension for the access tree will not lower the system security compared
with ITHJ09.

6.2 Efficiency

In ITHJ09 scheme, encryption requires |T | + 1 exponentiations in G and one
exponentiation in GT and |T | is the number of attributes in the access tree T .
Key generation requires |w|+ 1 exponentiations in G, w is the attribute set the
user has. Decryption requires |w′|+1 pairing operations, |w′| multiplications, w′

is the set of attributes satisfying the access tree, w′ ∈ w.
ECP-ABE uses the encryption and decryption algorithms of ITHJ09 scheme,

so the calculation expenses and the length of ciphertext are the same as ITHJ09.
The ECP-ABE scheme has two main differences compared with ITHJ09 scheme:
the ECP-ABE has the conversion from an extended tree to a standard tree
during the encryption; it also has the verification and transformation of extended
attributes during the key generation. Meanwhile, in ECP-ABE, the attribute
set used to generate the private key will be expanded after the extended leaf
node transformation. Therefore, the added calculation expense comes from the
following two factors:
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• The transformation from the extended tree to the standard tree during the
encryption phase.

• The verification and transformation of the extended attributes during the
key generation phase.

The following experiments illustrate the impact of the above factors on the actual
efficiency.

We use two groups of policy files as the test samples. One group only contains
policies with the standard attributes which are used as the policies of the ITHJ09
scheme, and the other only contains policies with the extended attributes which
are used as the policies of our ECP-ABE scheme. Each group has 10 test policy
files to test the efficiency and the number of attribute node varies from 1 to
10. The access tree is a two-tier structure when there are 1-4 attribute nodes, a
three-tier structure when there are 5-7 attribute nodes, and a four-tier structure
when there are 8-10 attribute nodes.

We run three times for each test policy file and get the average cost as the
result. Fig.5 is the result of the tests.

(a) The encryption time
cost comparison of ECP-
ABE scheme and ITHJ09
scheme

(b) The key application
time cost comparison of
ECP-ABE scheme and
ITHJ09 scheme

(c) The decryption time
cost comparison of ECP-
ABE scheme and ITHJ09
scheme

Fig. 5: The efficiency comparison of ECP-ABE and ITHJ09 scheme.

Discussion: the verification of the extended leaf nodes and the transformation
from the extended tree to the standard tree nearly have no effect on the perfor-
mance during the encryption and key application phase. However, the ECP-ABE
scheme has greatly enhanced the access policy expression capability.

7 Conclusion

The paper proposed an ECP-ABE scheme, which introduces the extended leaf
nodes into the access policy tree to support access policy formulas involving
operators including NOT,<,≤, >,≥, [ ], ( ), ( ] and [ ) in addition to AND, OR
and threshold operators. Hence the scheme enhanced access control ability of CP-
ABE prominently, and achieved self-contained protection for outsourced data in
open computing environments.
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ECP-ABE adopts the same implementation mechanism as other CP-ABE
schemes. Basing on the experiments analysis, we can see that our scheme has n-
early the same expense compared with ITHJ09 scheme, and ECP-ABE scheme is
proven chosen plaintext attack(CPA) secure under the decisional Bilinear Diffie-
Hellman assumption in the standard model. Hence, ECP-ABE can keep the
security and efficiency properties of the CP-ABE scheme which it based on, but
prominently improves the access capability of the baseline scheme. Also, the pol-
icy extension method used in ECP-ABE is not limited to the ITHJ09 scheme;
it can be used on other CP-ABE schemes that utilize tree-based access policy
structures.

For future work, it would be interesting to probe other more efficient way to
enhance the access control capability of CP-ABE schemes, such as working on
other access policy structures like LSSS.
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