
Insider Threat Mitigation in Attribute based Encryption

National Cyber Summit, June 8, 2017

Runhua Xu, James Joshi, Prashant Krishnamurthy, David Tipper

University of Pittsburgh

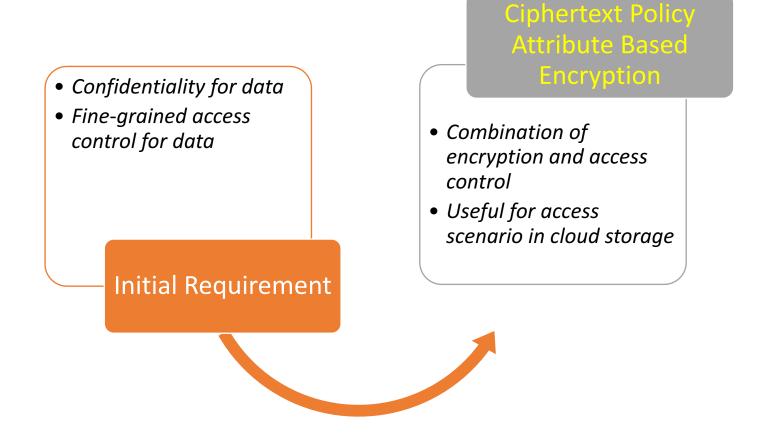
(jjoshi@pitt.edu)

Cloud Computing/Storage Service

- ❖It has been gaining significant success
 - potential "infinite" storage size
 - convenience of synchronization
 - ease of access (at anytime, from anywhere)

- ❖Users/Organizations
 - increasingly utilize/rely on the cloud storage services

Security & Privacy Concerns

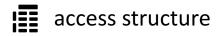

Cloud Storage Providers

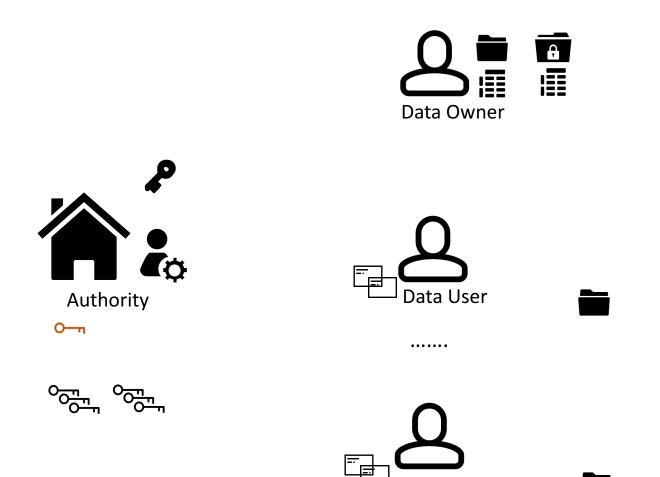
Source: http://www.gartner.com/newsroom/id/1862714

Honest-but-Curious

- -- run the programs and algorithms correctly,
- -- but gather information related to the stored data.

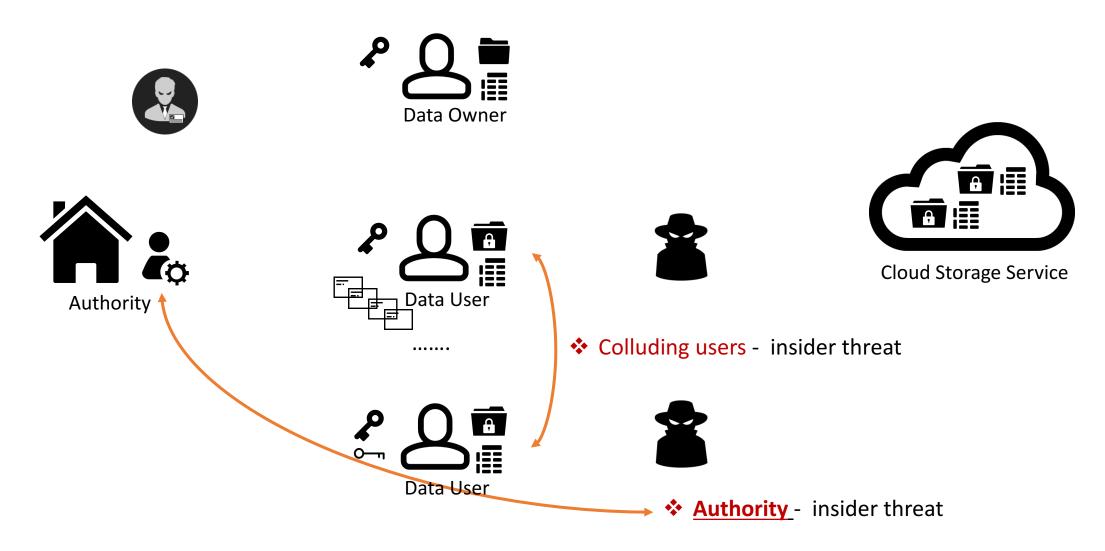
A Solution




Data → self-protection feature / abilitity

*Bethencourt John, Amit Sahai, and Brent Waters. "Ciphertext-policy attribute-based encryption." 2007 IEEE symposium on security and privacy (S&P'07). IEEE, 2007.

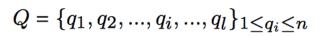
Overview of application

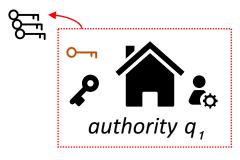


- ❖ Setup
- Encrypt
- Key Generator
- Decrypt

Two Types of Insider in ABE

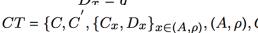
Authority as Insider threat


Potential Insiders system administrator attribute authenticator other employees network administrator (if deployed in private cloud) cloud administrator (if deployed in private cloud) private cloud ❖ network authority center



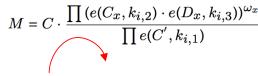
Multi-Authority CP-ABE

Encryption

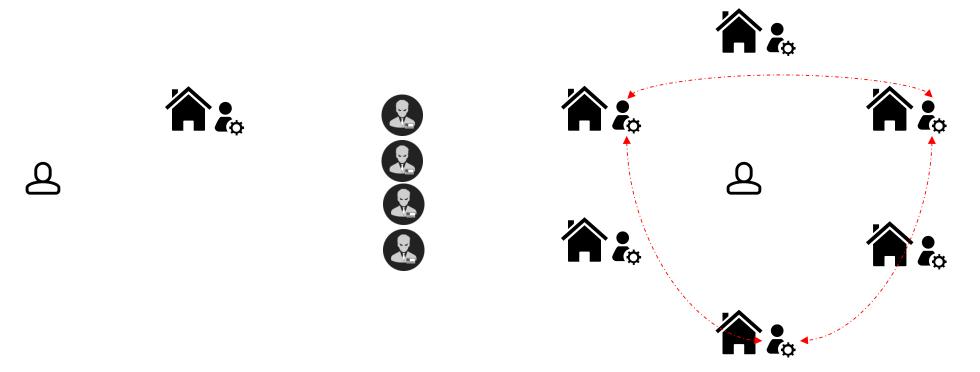

$$C = M \prod (e(g, g)^{s\alpha_{q_i}})_{\forall q_i \in Q}$$

$$C' = g^{s}$$

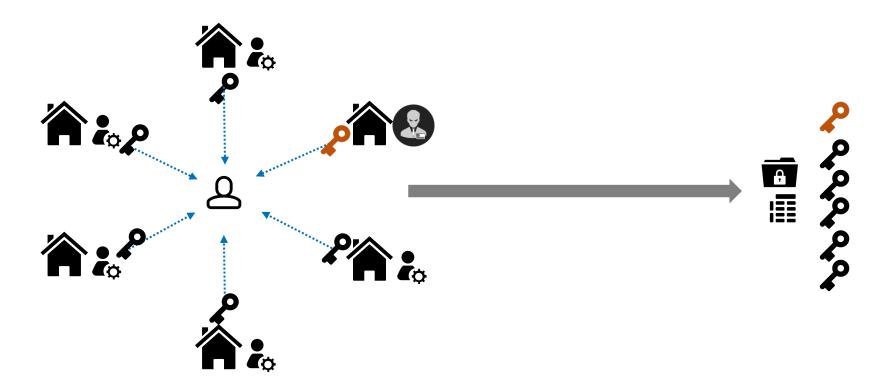
$$C_{x} = g^{a_{q_{i}} \vec{A_{x}} \vec{v}^{T}} \cdot att_{q_{i}, x}^{-r_{x}}$$


$$D_{x} = g^{r_{x}}$$

Decryption

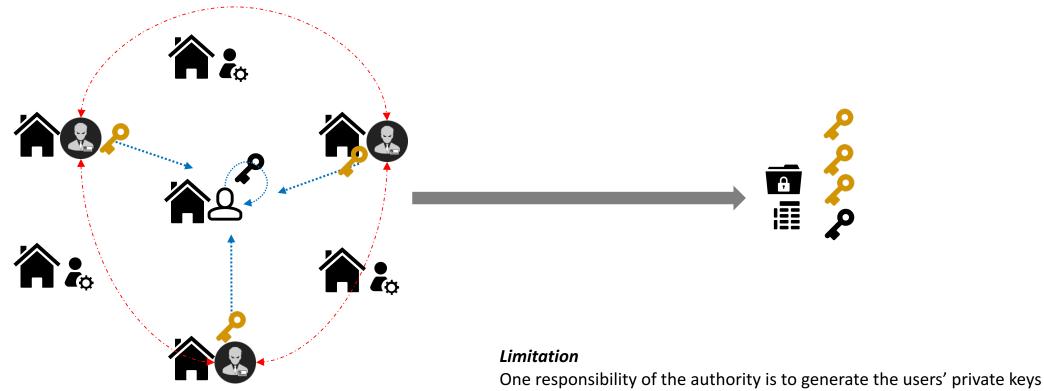


Two specific insider threat issues in Authority

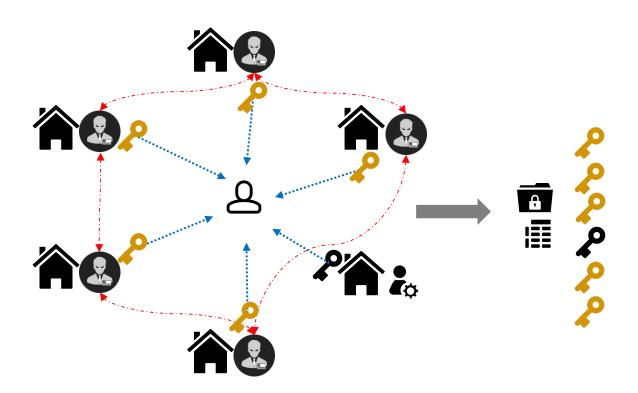

- single authority as a threat
 - ❖ MA-CP-ABE removes that

with insiders' collusion: different authorities

single authority as insider


multi-authority scheme can directly prevent the insider's attack from a single authority.

Collusion among different authorities


 I_N tolerance: self-authority, the data owner can play as an ABE authority itself

→ the self-authority should be available when the data user needs the key services.

ollusion among different authorities posing insider threat

 I_{N-1} tolerance: resist at most N – 1 insiders among the N authorities

$$Q = \{q_1, q_2, ..., q_i, ..., q_l\}_{1 \le q_i \le n}$$

Algorithm 1 The sequence Q generating algorithm.

Input: the number of attributes in the access structure l; the number of authorities N; the identity set of authorities $S_{\mathcal{A}}$.

Output: the generated sequence Q.

- 1: if $l \geq N$ then
- 2: $Q_{\mathcal{A}} \leftarrow \text{select all identities from } S_{\mathcal{A}}.$
- 3: $Q_{rest} \leftarrow \text{randomly select } l N \text{ identities from } S_{\mathcal{A}}.$
- 4: $Q \leftarrow Q_{\mathcal{A}} \cup Q_{rest}$
- 5: Shuffle the Q.
- 6: **else**
- 7: $Q \leftarrow \text{randomly select } l \text{ identities from } S_{\mathcal{A}}.$
- 8: Shuffle the Q
- 9: end if
- 10: return Q

Security Analysis

Security of MA-CP-ABE

- ❖ Simulation game [4,12]
 - Setup
 - Secret Key Queries
 - Challenge
 - More Secret Key Queries
 - Guess
- The adversary tries to break the scheme
- Insider Tolerance Analysis
- Complexity Analysis

Simulation game

Table 1: Comparison of efficiency

schemes	Our scheme	[8]
Encryption Decryption	$(4l+1)\mathcal{C}_{exp}$ $3 S \mathcal{C}_{map} + S \mathcal{C}_{exp}$	$(4 i +1)\mathcal{C}_{exp} + l \mathcal{C}_{map}$ $3 S \mathcal{C}_{map} + 3 S \mathcal{C}_{exp}$

Let $|\mathcal{C}_{exp}|$, $|\mathcal{C}_{map}|$ be the calculation of exponent and bilinear map over \mathcal{G} , respectively.

[8] Allison Lewko and Brent Waters. 2011. Decentralizing attribute-based encryption. In Annual International Conference on the Theory and Applications of Cryptographic Techniques. Springer, 568–588.

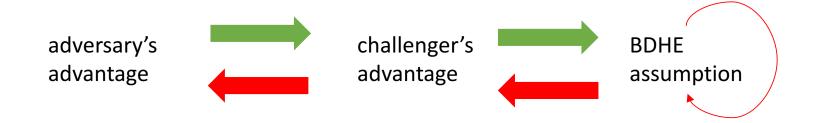
² l is the attribute number in the access structure, and |S| is the minimum set of users' attributes.

Conclusion

- Cloud computing/storage services are increasingly used
- Data confidentiality and Access control are among primary issues
- CP-ABE is useful in addressing both Data confidentiality and access control issues
- Authority needs to be trusted hence can pose as insider threat
- MA-CP-ABE scheme proposed addresses the Authority as insider threat agent
 - Two schemes
 - Complexity of the scheme is better than that of another existing scheme


Acknowledgement: This work was supported by NSA cybersecurity grant

Thanks! Questions?


Security Analysis

Security of MA-CP-ABE

- ❖ Simulation game [4,12]
 - ❖ Setup
 - Secret Key Queries
 - Challenge
 - ❖ More Secret Key Queries
 - Guess

- The adversary tries to break the scheme
- The challenger tries to solve the mathematical hard problem by taking the advantage of the adversary

Complexity Analysis and Correctness

The complexity of our proposed MA-CP-ABE scheme

Table 1: Comparison of efficiency

schemes	Our scheme	[8]
Encryption Decryption	$(4l+1)\mathcal{C}_{exp}$ $3 S \mathcal{C}_{map} + S \mathcal{C}_{exp}$	$\frac{(4 i +1)\mathcal{C}_{exp} + l \mathcal{C}_{map}}{3 S \mathcal{C}_{map} + 3 S \mathcal{C}_{exp}}$

Let $|\mathcal{C}_{exp}|$, $|\overline{\mathcal{C}_{map}}|$ be the calculation of exponent and bilinear map over \mathcal{G} , respectively.

2 l is the attribute number in the access structure, and |S| is the minimum set of users' attributes.

[8] Allison Lewko and Brent Waters. 2011. Decentralizing attribute-based encryption. In Annual International Conference on the Theory and Applications of Cryptographic Techniques. Springer, 568–588.

Correctness inference

$$T = \frac{\prod_{i \in Q} e(C', k_{i,1})}{\prod_{i \in Q, x \in I} (e(C_x, k_{i,2})e(D_x, k_{i,3}))^{\omega_x}}$$

$$= \frac{\prod_{i \in Q} e(g^s, g^{\alpha_i} \cdot g^{a_i t_i})}{\prod_{i \in Q, x \in I} (e(g^{a_i \vec{A_x} \vec{v}^T} \cdot att_{i,x}^{-r_x}, g^{t_i})e(g^{r_x}, att_{i,j}^{t_i})))^{\omega_x}}$$

$$= \frac{e(g, g)^{\sum_{i \in Q} s(\alpha_i + a_i t_i)}}{e(g, g)^{\sum_{i \in Q} s(\alpha_i + a_i t_i)}}$$

$$= \frac{e(g, g)^{\sum_{i \in Q} s(\alpha_i + a_i t_i)}}{e(g, g)^{\sum_{i \in Q} a_i t_i s}}$$

$$= e(g, g)^{\sum_{i \in Q} s\alpha_i}$$

Then the message M could be recovered as follows:

$$\frac{C}{T} = \frac{M \prod (e(g,g)^{s\alpha_{q_i}})_{q_i \in Q}}{e(g,g)^{\sum_{i \in Q} s\alpha_i}} = \frac{Me(g,g)^{\sum_{q_i \in Q} s\alpha_i}}{e(g,g)^{\sum_{i \in Q} s\alpha_i}} = M$$