
Extending the Ciphertext-Policy Attribute Based Encryption Scheme
for Supporting Flexible Access Control

Bo Lang, Runhua Xu, Yawei Duan
School of Computer Science & Engineering, Beihang University, 37# Xueyuan Road, Beijing, China

langbo@buaa.edu.cn, {xurunhua, duanyawei}@nlsde.buaa.edu.cn

Keywords: Ciphertext-policy attribute based encryption (CP-ABE), Extended CP-ABE, Attribute based access
control, Cloud computing

Abstract: Ciphertext-Policy Attribute Based Encryption (CP-ABE) is recognized as an important data protection
mechanism in cloud computing environment for its flexible, scalable and fine-grained access control features.
For enhancing its security, efficiency and policy flexibility, researchers have proposed different schemes of CP-
ABE which have different kinds of access policy structures. However, as far as we know, most of these
structures only support AND, OR and threshold attribute operations. In order to achieve more effective data self-
protection mechanisms in open environments such as Cloud computing, CP-ABE needs to support more flexible
attribute based policies, most of which are described using operators of NOT, <, ≤, >, ≥. This paper proposed an
Extended CP-ABE(ECP-ABE) scheme based on the existing CP-ABE scheme. The ECP-ABE scheme can
express any access policy represented by arithmetic comparison and logical expressions that involve NOT, <,
≤, >, ≥ operators in addition to AND, OR and threshold operators. We prove the Chosen-plaintext Attack (CPA)
security of our scheme under the Decisional Bilinear Diffie-Hellman (DBDH) assumption in the standard model,
and also discuss the experimental results of the efficiency of ECP-ABE.

1. INTRODUCTION

In open computing environment such as cloud
computing, the protection mechanism of outsourced
data (sometimes just simply called data) attracts much
more attentions(Samarati and di Vimercati, 2010,
Vimercati et al., 2010). These data departs from the
control domain of its owner and is stored and managed
by unreliable service providers. Hence, the self-
protection capabilities of data become very important.
Traditionally, access control and encryption are the two
basic protection mechanisms for achieving data
integrity and confidentiality. Self-protection of data
means that data itself can ensure its integrity and
confidentiality without depending on other parties.

Data encryption is the primary data self-protection
means at present. Traditional Public-Key encryption
and Identity Based Encryption schemes (Shamir, 1985)

are designed for one-to-one communication, which

means the information encrypted by a public key or
identity can only be decrypted by the specific private
key. This situation has been changed since Sahai and
Waters proposed the Attribute Based Encryption
scheme (Sahai and Waters, 2005), where ciphertexts
are not necessarily encrypted to one particular user.
Both users’ private keys and ciphertexts are associated
with a set of attributes or a policy over attributes.
When the attributes of a user’s private key can match
the attributes of the ciphertext in a certain extent, the
user can be able to decrypt the ciphertext. By defining
decryption attributes, ABE can dynamically control the
user group of the encrypted data.

Goyal et al. further developed this idea and
introduced two variants of ABE, namely key-policy
attribute based encryption(KP-ABE) and ciphertext-
policy attribute based encryption(CP-ABE). In KP-
ABE, whose first construction is given by (Goyal et al.,
2006), ciphertext is associated with a set of attributes

and the secret key is associated with the access tree. A
user will be able to decrypt if and only if the attributes
in the ciphertext satisfy his access tree. In CP-ABE, the
idea is reversed. The ciphertext is associated with the
access tree and the secret key is associated with a set of
attributes, and the encrypting party determines the
decryption policy.

(Bethencourt et al., 2007) gave the initial structure
of CP-ABE. We refer to this scheme as BSW07 in this
paper. BSW07 is relatively expressive and efficient,
but the security argument is based on generic group
model, an artificial model which assumes the attacker
needs to access an oracle in order to perform any group
operation. After that, many researchers have presented
different schemes for the less ideal security argument,
trying to prove the security based on a well-studied
complexity-theoretic problem. And also there are many
people worked at improving the efficiency or the
flexibility of access policy for the CP-ABE scheme.
These schemes mainly support three kinds of access
policy structure: AND-gates, tree structure and Linear
Secret Share Scheme (LSSS) matrix. Among them, the
tree structure and LSSS matrix are relatively flexible,
which supports AND, OR and threshold operation.
BSW07 uses “bag of bits” to express policies
containing <, ≤, >, ≥. However, this approach is much
complex and has poor scalability, and is hard to be
used in practical applications. For NOT operator,
BSW07 has no solution. To the best of our knowledge,
there is no efficient way to express an access policy
that contains operators such as NOT, <, ≤, > and ≥ in
present CP-ABE schemes, which makes CP-ABE only
support simple attribute policies.

Access control and encryption are the two key
techniques in data-centric protection, and CP-ABE
makes it possible to integrate these two techniques
seamlessly. However, the limited access policy
expression in CP-ABE restricts its access control
capability.
Our contribution. In the area of access control,
Attribute-based Access Control (ABAC) model
(Junbeom and Dong Kun, 2011, Lang et al., 2009,
Wang et al., 2010) makes access control decisions
based on user attributes. The policies in ABAC are
defined as attribute expressions that contain attributes,
constants, and AND, OR, NOT, <, ≤, >, ≥ operators,
and can express complex access control rules. If the
access policy structure of CP-ABE can be enhanced to
express complex attribute policies as ABAC, CP-ABE

will become an ideal scheme for implementing data
self-protection in open computing environments.
Following this idea, we proposed the Extended CP-
ABE scheme (ECP-ABE). In ECP-ABE, by
introducing extended leaf nodes, the access tree of CP-
ABE is enhanced to support all kinds of logical and
arithmetic comparison operators, including <, ≤, =, >,
≥ and NOT et al. Therefore, ECP-ABE can realize
powerful access control as well as encryption, and data
processed by ECP-ABE will have strong self-
protection capabilities. Our scheme is proven to be
chosen plaintext (CPA) secure under the decisional
Bilinear Diffie-Hellman (DBDH) assumption in the
standard model.
Organization. The remaining sections are organized as
follows. In Section 2, we introduce related work. In
Section 3, we review the concepts of access structure,
Shamir’s secret sharing scheme, bilinear maps, DBDH
assumption and the backgrounds of the CP-ABE
scheme. We present our extended CP-ABE (ECP-ABE)
scheme in Section 4. We then discuss the performance
of ECP-ABE from aspects of security and efficiency in
Section 5. Finally, we conclude this paper in Section 6.

2. RELATED WORK

BSW07 expresses the access policy by a tree structure
which supports AND, OR and threshold operations. At
the same time, the length of the ciphertext and the
encryption or decryption time are linearly related with
the number of attributes of the access structure tree.
However, the security proof of BSW07 is based on
generic group model, rather than the standard
numerical theoretical assumptions. In addition, as a
result of using polynomial interpolation to resume
secret during the decryption phase, BSW07 needs
greater number of bilinear mapping and exponentiation
operation, and costs of these operations are relatively
high.

After that many scholars have proposed different
schemes (Su et al., 2011). Cheung and Newport first
gave the CP-ABE scheme (CN07)(Cheung and
Newport, 2007) under CPA security based on DBDH
assumption. However, the scheme only have the AND
and NOT operator in the access policy structure, and
the ability of policy expression is poor. Moreover, the
length of the ciphertext and the key, and the time of

encryption or decryption are linearly related with the
number of attributes, which lead to the lower efficiency.
Goyal et al raised the Bounded Ciphertext Policy
Attribute Based Encryption scheme (Goyal et al., 2008)
based on DBDH assumption, which supported the
AND, OR and threshold operations. (Liang et al.,
2009a, Liang et al., 2009b) shortened the system’s
public key, the user’s private key and the length of the
ciphertext and improved the efficiency of encryption
and decryption based on BCP-ABE. But it limited the
level of the access policy tree and the number of child
non-leaf nodes.

Nishide gave an Attribute-Based encryption scheme
(Nishide et al., 2008) with partially hidden encryptor-
specified access structures, which only supported the
AND operation and attributes have more than one
candidate value. Emura et al first raised the CP-ABE
with constant ciphertext length based on Nishide’s
scheme (Emura et al., 2009), which improved the
efficiency of the algorithm. But it also just supported
the AND operation. Ibraimi et al gave an efficient and
provable secure CP-ABE scheme (Ibraimi et al., 2009)
based on DBDH assumption using the threshold secret
share technology (Shamir, 1979), which supported
AND, OR and threshold operations. Its access structure
was an n-tree and the costs of key generation,
encryption and decryption are lower than the BSW07
scheme. Waters has used the LSSS matrix to express
the access control policy and pointed out that the
ability of expression is not lower than the tree
structure(Waters, 2011). Lewko et al (Lewko et al.,
2010) also applied the LSSS matrix structure in their
scheme, which supported any monotone access formula.
Attrapadung and Imai (Attrapadung and Imai, 2009)
gave a revocable scheme which admits ciphertext and
private key sizes roughly the same as the currently best
(non-revocable) ciphertext-policy ABE.

In order to support complex Boolean access
policies, Junod and Karlov (Junod and Karlov, 2010)
proposed an efficient public-key ABBE scheme
allowing arbitrary access policies, which is based on a
modification of the Boneh-Gentry-Waters broadcast
encryption scheme. Chen et al (Chen et al., 2011)

presented two new CP-ABE schemes, which have both
constant-size and constant computation costs for a non-
monotone AND gate policy. Jin et al (Li et al., 2011)

enhanced the attribute-based encryption with attribute
hierarchy and obtain a provable secure HABE under
tree hierarchy. Attrapadung et al(Attrapadung et al.,

2011, Attrapadung et al., 2012) proposed the first KP-
ABE schemes allowing for non-monotonic access
structures and with constant ciphertext size. Zhiguo et
al (Zhiguo et al., 2012) proposed a hierarchical
attribute-set-based encryption (HASBE) scheme which
extended the ciphertext-policy attribute-set-based
encryption for access control in cloud computing.

From the view of security and expressive ability of
access policy, only the W08 and ITHJ09 scheme
supported the AND, OR and threshold operation under
the theoretical assumptions of the standard numerical.
And the computation cost of encryption and decryption
of ITHJ09 is lower than W08’s. Therefore, we choose
ITHJ09 as the basic CP-ABE scheme, and further
expand the access policy tree of ITHJ09 to construct an
Extended CP-ABE scheme.

3. ANALYSIS OF CP-ABE
SCHEME

3.1 Preliminaries

We firstly give formal definition for access structure,
and then introduce the relevant background
information on Shamir secret sharing scheme, bilinear
maps and the Decision Bilinear Diffie-Hellman(DBDH)
assumption.

3.1.1 Access Structure

Definition 1. Access Structure(Beimel, 1996).
Let { }1 2 nP ,P ,...,P be a set of parties. A collection

{ }2A⊆ 1 2 nP ,P ,...,P is monotone if ,B C∀ : if
B A∈ and B C⊆ then C A∈ . An access structure
(respectively, monotone access structure) is a
collection (respectively, monotone collection) A of
non-empty subsets { }1 2 nP ,P ,...,P , i.e.,

{ }2A⊆ 1 2 nP ,P ,...,P \{∅}。The sets in A are called the
authorized sets, and the sets not in A are called the
unauthorized sets.

In ECP-ABE, the access structure A will contain the
set of authorized attributes.

3.1.2 Shamir secret sharing scheme

In Shamir's secret sharing technique (Shamir, 1979) a
secret s is divided into n shares in such a way that any

subset of t shares, where t ≤ n, can together reconstruct
the secret; no subset smaller than t can reconstruct the
secret. The technique is based on polynomial
interpolation where a polynomial y = f(x) of degree t-1
is uniquely defined by t points (xi, yi). The details of the
scheme are as follows:

1. Setup. The dealer D wants to distribute the
secret s > 0 among t users.
a) D chooses a prime p > max(s,n), and

define a0 = s.
b) D selects t-1 random coefficients a1,…,at-1,

0 ≤ aj ≤ p-1, and define the random
polynomial over ℤp :

1

0
() t j

jj
f x a x−

=
=∑

c) D computes si=f(i) mod p, and sends
securely the share si to user pi together
with the public index i.

2. Pooling of shares. Any group of t or more users
pool their distinct shares (x,y)=(i,si) allowing
computation of the coefficients aj of f(x) by
Lagrange interpolation,

1

0 1,
0

() () , ()
t

i
j j j i t i j

j j i

x xf x l x s where l x
x x

−

≤ ≤ − ≠
=

−
= ⋅ =

−∑ ∏

The secret s is f(0) = a0.

3.1.3 Bilinear Maps

Let 𝔾 and 𝔾T be two multiplicative cyclic groups of
prime order p. Let g be a generator of 𝔾 and e be a
bilinear map, e: 𝔾 × 𝔾 → 𝔾T, with the following
properties:
 Bilinearity: for all x, y∈ 𝔾 and a,b∈ℤp, we have

e(xa,yb) = e(x,y)ab.
 Non-degeneracy: e(g, g) ≠ 1

If the group operation in 𝔾 and the bilinear map e
are both efficiently computable, the multiplicative
cyclic group 𝔾 is a bilinear group. Notice that the map
e is symmetric since e(ga, gb) = e(g,g)ab= e(gb, ga).

3.1.4 The Decisional Bilinear Diffie-Hellman
Assumption

Let a, b, c∈ℤp be chosen randomly, Z be the random
element from 𝔾T and g be a generator of 𝔾 (𝔾 and 𝔾T
be two multiplicative cyclic groups mentioned in 3.1.3).
The decisional BDH assumption(Boneh and Boyen,
2004, Sahai and Waters, 2005) is that no probabilistic

polynomial-time algorithm β can distinguish the tuple
<ga, gb, gc, e(g, g)abc > from the tuple <ga, gb, gc, Z)
with more than a negligible advantage ε :

| Pr[(, , , (,)) 0] Pr[(, , ,) 0] |a b c abc a b cg g g e g g g g g Zε β β= = − =
 Here the probability is over the random choice of Z
in 𝔾T, the random choice of a, b, c in Zp, and the
random bits of β.

3.2 CP-ABE

3.2.1 Access Tree

Definition 2. Access Tree (Bethencourt et al., 2007).
Let 𝒯 be a tree representing an access structure. Each
non-leaf node of the tree represents a threshold gate,
described by its children and a threshold value. If numx
is the number of children of a node x and kx is its
threshold value, then 0<kx<numx. When kx=1, the
threshold gate is an OR gate and when kx=numx, it is an
AND gate. Each leaf node x of the tree is described by
an attribute and a threshold value kx=1.

We define tree functions over the tree. The function
parent(x) represents the parent of node x. If x is a leaf
node, we define the function attr (x) to denote the
attribute with the leaf node. As the access tree has an
ordering between the children of every node, the
function index(x) represents the index number of each
child node.

3.2.2 Satisfying an Access Tree

Definition 3. Satisfied Access Tree (Bethencourt et al.,
2007). Let 𝒯 be an access tree with root r. Denote by
𝒯x the subtree of 𝒯 rooted at the node x. Thus, 𝒯 is the
same as 𝒯r. If a set of attributes γ satisfies the access
tree 𝒯x, we denote it as 𝒯x(γ)=1. We compute 𝒯x(γ)
recursively as follows. If x is a non-leaf node, evaluate
𝒯x'(γ) for all children x' of node x. 𝒯x(γ) returns 1 if and
only if at least kx children return 1. If x is a leaf node,
then 𝒯x(γ) returns 1 if and only if att(x) ∈γ.

3.2.3 CP-ABE Algorithms

The ciphertext-policy attribute based encryption
scheme consists of four fundamental algorithms
(Bethencourt et al., 2007): Setup, Encrypt, Key
Generation, and Decrypt.

Setup (k). The setup algorithm takes no input other
than the security parameter k. It outputs the public
parameters PK and a master key MK.
Key-Generation (MK, S). The key generation
algorithm takes as input the master key MK and a set of
attributes S that describe the key. It outputs a private
key SK.
Encrypt (PK, M, A). The encryption algorithm takes
as input the public parameters PK, a message M, and
an access structure A over the universe of attributes.
The algorithm will encrypt M and produce a ciphertext
CT such that only a user that possesses a set of
attributes that satisfies the access structure will be able
to decrypt the message. We will assume that the
ciphertext implicitly contains A.
Decrypt (PK,CT, SK). The decryption algorithm takes
as input the public parameters PK, a ciphertext CT
which contains an access policy A, and a private key
SK. If the set S of attributes satisfies the access
structure A then the algorithm will decrypt the
ciphertext and return a message M, otherwise return the
error symbol ⊥.

4. ECP-ABE SCHEME

The ITHJ09 used Shamir secret sharing technique to
support AND, OR and of (threshold) nodes based on
CP-ABE scheme. The access policy tree is n-ary tree.

Each node has two attributes: the number of child
nodes n and threshold value t (1≤t≤n). When t =1, it’s
an OR gate; when t = n, it’s an AND gate; when 1<t<n,
it’s an of gate. The leaf node associates policy
properties and its value t is 1. The ECP-ABE scheme
we proposed is based on the ITHJ09 scheme and we
extend the access tree to make it be able to express the
complex policies that contain arithmetic and logical
expressions.

4.1 Extended Leaf Node

The universal attribute set U is published by the
Trusted Authority. Each user has his or her attribute set
w which is used for key generation and we refer to it as
the basic attribute set. In Attribute Based Access
Control system, user’s access right could be
dynamically calculated according to his security
character and the resource he applied for. Inspired by
this, we extend the leaf node of the access policy tree.

We replace the original leaf node with the operator
node and give it two children, which we refer to as the
attribute name node and the attribute value node, as
shown in Figure 1(a). The operator node, the attribute
name node and the attribute value node compose an
extended leaf node, and the attribute expression
described by an extended leaf node is called an
extended attribute, for instance, the attribute “age>18”
is an extended attribute. Meanwhile, the range of
threshold value t of the extended leaf node is less than

attribute value
node

attribute name
node

Operator Node
(t<1)

Root Node

Interior Node
(1≤ t≤ n)

leaf node
(t=1)

(a) extended access tree

extended leaf
node

not

Software-
engineeringschool

Operator Node
(t= -1)

attribute name node

(b)example of extended leaf node

attribute value node

Figure 1: Extended access tree

0 from the original value 1.
The operator node only has the threshold value t

(t<0). Different value of t denotes specific operator, for
instance, t = -1 for not operator, t = -2 for > operator.
The attribute name/value node denotes the attribute
name and the attribute value respectively that are
associated with the operator. With this structure, we
can express policy attributes using operators of not, <,
≤, >, ≥ . Figure 1(b) is an example of this structure,
which express the policy attribute “school not
software-engineering”.

ECP-ABE scheme augments two kinds of operators:
comparison operators and logic operators.
 Comparison operators:<, ≤, >, ≥.
 Logic operators: not.

The values of t and the corresponding operator that
each value represents are defined in Table 1.

Table 1: Values of t and its corresponding operator.

Value t Operator
-1 not
-2 <
-3 >
-4 ≤
-5 ≥

4.2 Transforming an extended policy
tree to a standard tree

Now we define the extended policy tree as the
extended tree T* and the original tree is called the
standard tree T. An extended tree can be transformed
to an equivalent standard tree by removing the attribute
name/value node, converting the operator node to the

standard leaf node and then assigning the attribute
expression described by the extended leaf node as an
extended attribute to the stand leaf node. The extended
tree T* and the standard tree T express the same access
policy. For example, the extended tree in Figure 2(a)
can be transferred into the standard tree in Figure 2(b).

The user expresses the access policy using the
extended tree and makes it the parameter for the
encryption. The encryption algorithm will firstly
transform the extended tree to a standard tree, and then
encrypts the message using the standard access policy
tree. Finally, we attach the extended tree in the
ciphertext.

To decrypt the ciphertext, the decryption party needs
to apply the secret key by giving PKG his basic
attribute set and the extended parts of the access tree.
At the PKG side, we use the attribute verification
algorithm as shown in Algorithm 1 to verify and
transform an extended leaf node.

ALGORITHM 1: Attribute Verification
1: Get the expression exp(N.O.V) of the extended

leaf node, where N, O and V denote the basic
attribute name, the operator and the attribute
value respectively;

2: Traverse the basic attribute set A’ to find the
basic attribute N and its value V’;

3: Let N=V’, and calculate the expression
exp(N.O.V);

4: if the value of exp(N.O.V) is true
5: Convert exp(N.O.V) to string S=“N.O.V”
6: return S;
7: else
8: return null;
9: end if

∨

∧

∧

School not
Software

engineering
age<40teacher

(b) The standard policy tree T corresponding to T* in (a)

age>18student

∨

∧

not >

∧

student

school Software
engineering

age 18

<

age

teacher

40

(a) An extended policy tree T*

Figure 2: Examples of extended and standard access policy tree

This algorithm will first get user’s basic attribute set
and then traverse the attribute set to check whether or
not the attribute N satisfies the expression exp(N.O.V).
If the answer is yes, it returns the string form of
exp(N.O.V), i.e. “attribute name operator attribute
value” which is regarded as an extended attribute of
the user. Otherwise it will return null.

Here is an example of the transformation.
There is a file F in a campus network system and

the file has an access policy: “It can be accessed if and
only if the user is a teacher under age of 40 or an older
than 18-year-old student who is not in school of
software-engineering”. So, we can give the policy “T*
= (student ∧ school not software-engineering ∧ age >
18) ∨ (teacher ∧ age < 40)”, and the extended access
tree for this policy is shown in Figure 2(a). Figure 2(b)
is the standard access tree which converts from the
extended tree in figure 2(a). The encryption party
encrypts the file F with T and attaches T* in the
ciphertext.

Suppose user A and user B wants to decrypt the file
F. The basic attributes of A is {student,
school=computer science, age=20}, and the basic
attributes of B is {student, school=computer science,
age=17}. Firstly, Both A and B need to extract the
extended parts of T* from the ciphertext and send them
with their basic attribute set to PKG. Then, PKG
verifies and generates the new attribute set {student,
school not software-engineering，age > 18} for A, and
the new attribute set { student，school not software-
engineering， age = 17} for B. The corresponding
private keys are generated using these new attribute
sets by PGK concurrently. Obviously, user B’s
attribute set doesn’t satisfy the access policy, hence
user A can decrypt the file F while user B can’t.

4.3 Encryption and Decryption Process
of ECP-ABE

The encryption party expresses the access policy with
an extended tree and the tree in the ciphertext is also in
the extended structure. However, when encrypts a
message, the encryption algorithm will first transform
the extend tree to an equivalent standard tree and
encrypt the message using the standard one. So in the
encryption phase, we can use the algorithm of ITHJ09
scheme. For ciphertexts that encrypted under different
extended access trees, users have to apply for different

secret keys, since PKG need to verify and generate
extended attributes according to the extended tree and
user’s basic attributes. Detailed encryption and
decryption processes are described as follows.

a. Initialize: the system initializes and generates
public parameter pk and master key mk. It gives
pk to the encryption party. The description of
initialization algorithm Setup (k) is as follow.

i. Generate a bilinear group G of prime order p
with a generator g and a bilinear map e:G × G
→ GT.

ii. Generate the attribute set U = {a1,a2,…,am}, for
some integer m, and random elements α, t1,
t2,…,tm ∈Zp

*. Let y = e(g,g)α, Tj = gtj (1≤ j ≤ m).
The public key is pk = (e, g, y, Tj(1≤ j ≤ m)),
and the master key is mk = (α, tj (1≤ j ≤ m)).

b. Specify the access policy: the encryption party
specifies access policy, which is expressed by an
extended tree T*.

c. Encryption: the encryption party calls the
encryption algorithm Encrypt (m, T*, pk) with
plaintext m, the extended tree T* and the public
parameter pk. The encryption algorithm will first
transform T* to the equivalent standard tree T, and
then encrypt m under T using Shamir’s secret
sharing technique. Finally it returns the ciphertext
CT which contains T*, such that only users who
have the secret key generated from the attributes
that satisfy T* will be able to decrypt the message.
The detail description is as follows:
i. Convert the T* to the standard tree T;

ii. Select a random element s ∈Zp
* and compute

c0 = gs and c1= M⋅ys = M⋅e(g,g) αs
iii. Set the value of the root node of T to be s,

mark all child nodes as un-assigned, and mark
the root node assigned. Recursively, for each
un-assigned non-leaf node, do the following:

If its child nodes are un-assigned， the
secret s is divided using (t,n)-Shamir secret
sharing technique. The relation of n and t is: if
the symbol is of then 1 < t < n; if the symbol is
AND, then t = n; if the symbol is OR, then t =
1. To each child node a share secret si = f(i) is
assigned. Mark this node assigned.

iv. For each leaf attribute aj,i ∈T, compute cj,i =
Tj

si, where i denote the index of the attribute in
the access tree.

v. Return the ciphertext: CT = (T, c0, c1, ∀aj,I ∈
T:cj,i).

d. Secret key request: when a user gets CT and
wants to decrypt, he first needs to analyze the
structure of T* and find the extended parts, then
apply for the secret key by giving PKG his basic
attribute set w and the extended parts of the
access tree.

e. Secret key generation: PKG first verify the
user’s basic attribute. If the basic attributes of the
user are authenticated, PKG will extract the
attribute name, the attribute value and the
operator, and run Algorithm 1. Attributes in w
that satisfy the extended leaf node will be
replaced by the returned extended attributes.
Finally PKG gets the new attribute set w* and
generates the secret key skw* corresponds to w*
and sends it back to the user. The detailed
description is as follows:
i. Select a random value r ∈Zp

*, d0 = gα- r.

ii. For each attribute aj in w, compute dj =
1−

jrtg .
iii. Return the secret key skw =(d0,∀aj ∈ w:dj)

f. Decryption: the user calls the decryption
algorithm Decrypt(CT, skw

*). The algorithm
returns message m if the smallest attribute set w’
∈ w* that corresponds to skw

* satisfies T.
Otherwise it returns an error symbol ⊥. More
details are as follows:
For every attribute aj ∈ w’, computing:

1
(0)

0 0 ,
'

(,) (,) i

j

l
j i j

a w

cm
e c d e c d

∈

=
⋅∏

li(0) is a Lagrange coefficient and can be
computed by everyone who knows the index of the
attribute in the access tree.
Correctness Proof:

1

1

1
(0)

0 0 ,
'

(0)

(0)

'

'
(,) (,)

(,)
(,) (,)

(,)
(,) (,)

i

j

ji i

j i j i

j

l
j i j

a w

s

rts ls r
j

s

t s rt ls r

a w

cm
e c d e c d

m e g g
e g g e T g

m e g g
e g g e g g

α

α

α

α

−

−

∈

−

−

∈

=
⋅

⋅
=

⋅

⋅
=

⋅

∏

∏

(,) (,)
(,) (,) (,)

s s

s r rs s

m e g g m e g g m
e g g e g g e g g

α α

α α−

⋅ ⋅
= = =

⋅

5. ECP-ABE PERFORMANCE
ANALYSIS

5.1 Security

The major contribution of ECP-ABE scheme is the
extension of the access tree. The core
encryption/decryption algorithm of ECP-ABE is based
on ITHJ09 scheme. In ITHJ09 scheme semantic
security under chosen-plaintext attack (CPA) is
modeled by IND-sAtt-CPA game. The security model
of ECP-ABE will still be based on IND-sAtt-CPA
game, but the challenging access tree provided by the
adversary in Init phase will be an extended tree instead
of a standard tree. IND-sAtt-CPA game of ECP-ABE
security model is as follows:
 Init. The adversary A chooses the challenge

access tree T* and gives it to the challenger, T*
is an extended tree.

 Setup. The challenger runs Setup to
generate(pk,mk) and gives the public key pk to
adversary A. The challenger also transforms T*
to the equivalent standard tree T.

 Phase1. Adversary A makes a secret key
request to the Keygen oracle for any attribute
set w = { aj | aj ∈U}, with the restriction aj ∉ T*
and aj does not satisfy the policy attribute
requirement expressed by the extend part of T*.
The challenger runs Algorithm 1 to generate
extended attribute set w* and then returns
Keygen(w*, mk).

 Challenge. Adversary A sends to the challenger
two equal length messages m0, m1. The
challenger picks a random bit b ∈ {0,1} and
returns Cb = Encrypt(mb, T*, pk).

 Phase2. Adversary A can continue querying
Keygen oracle with the same restriction as in
Phase1.

 Guesss. Adversary A outputs a guess b’ ∈
{0,1}.

The advantage of A winning this game is defined as:
ε = |Pr[b’=b] – 1/2|.

Definition 1 ECP-ABE scheme is said to be secure
against an adaptive chosen-plaintext attack(CPA) in
the standard model if any polynomial-time adversary
has only a negligible advantage in the above IND-sAtt-
CPA game.

In the above game, adversary A uses an extended
tree to challenge instead of a standard tree. We have
the following analyse:

1. The limitation for the basic attribute set w = { aj
| aj ∈ U } provided by adversary A in Phase1 is
aj ∉ T* and aj does not satisfy the policy
attribute requirement expressed by the extended

part of T*. According to this limitation, we can
infer that ∀bj

∈w ， bj
*∉T. So in Phase1,

changes of access tree will not introduce any
new security problem, i.e. the secret key that A
gets could not decrypt the ciphertext Cb.

2. Although adversary A submits the extended tree
T* in Init phase, message mb is encrypted under
standard tree T. Transformation between T* and
T is public. In Phase1, Challenge and Phase2,
adversary A could design the query and
challenge against T*. So the attacking ability of
A keeps the same.

Table 2 the test samples without repetitive same name attributes
 1-4 attribute nodes

（4 nodes for instance）
5-7 attribute nodes

（6 nodes for instance）
8-10 attribute nodes

（9 nodes for instance）

St
an

da
rd

 a
ttr

ib
ut

e
po

lic
y

∧

security_level=7 salary=7500 gender=M age=24

∧

∧ ∧

security_
level=7

name=Sky

gender=M age=24expired_date=
2013-01-01

department=
product-

development

∧

∧ ∧

security_
level=7

name=Sky gender=M

age=24

∧

expired_date=
2013-01-01

department=
product-

development

salary=7500project_name=
maintenance-

group

office_locati
on=

BuildingC-1

security_ level=7
∧salary=7500
∧gender=M
∧age=24

(security_level=7
∧gender=M)
∧(department=product
∧expired_date=201301
∧age=24)
∧name=Sky

(security_level =7
∧department=product)
∧(name=Sky
∧gender=M
∧(office =BC-1
∧project =T1
∧age=24∧salary=7))
∧expired_date=201301

Ex
te

nd
ed

 a
ttr

ib
ut

e
po

lic
y

∧

not not ≥ ≥

id Bob@gmail.com name Tom salary 7000 security_level 4

∧

∧ ∧ ≥

security_level

age

≥ ≥ not not not

7

25 salary 9000 depart
ment

accoun
ting

name Jackid

∧

∧ ∧ ≥

age

≥ ≥ not not ∧

not not not not

20 salary 5000

7
Security
_level

accountingdepartment Tomname

primary-
title

profes
sional
_title

BuildingA-1office_
location

Bob@gmail.comidsales-group1projec
t_name

(id not Bob@gmail.com)
∧(name not Tom)
∧(salary≥7000)
∧(security_level≥4)

(age≥25)∧(salary≥9000)
∧(department not account)
∧(id not Tom@gmail.com)
∧(name not jack)
∧(security_level ≥7)

(age≥20)∧(salary≥5000)
∧(department not account)
∧(name not tom)
∧(project not S1)
∧(id not Bob@gmail.com)
∧(office not A1)
∧(professional not PA)
∧(security_level ≥7)

Hence, we can conclude that in ECP-ABE scheme
the advantage of A in the IND-sAtt-CPA game equals
to the advantage of A in ITHJ09 scheme, i.e. in ECP-
ABE scheme any polynomial-time adversary has only a
negligible advantage in the IND-sAtt-CPA game.
So ECP-ABE scheme is secure against an adaptive
chosen-plaintext attack(CPA) in the standard model.
Our extension for the access tree will not lower the
system security compared with ITHJ09.

5.2 Efficiency

In ITHJ09 scheme, encryption requires |T|+1
exponentiations in 𝔾 and one exponentiation in 𝔾T and
|T| is the number of attributes in the access tree T. Key
generation requires |w|+1 exponentiations in 𝔾, w is the
attribute set the user has. Decryption requires |w’|+1
pairing operations, |w’| multiplications, w’ is the set of
attributes satisfying the access tree, w’ ⊆ w.

ECP-ABE uses the encryption and decryption
algorithms of ITHJ09 scheme, so the calculation
expenses and the length of ciphertext are the same as
ITHJ09. The ECP-ABE scheme has two main
differences compared with ITHJ09 scheme: the ECP-
ABE has the conversion from an extended tree to a
standard tree during the encryption; it also has the
verification and transformation of extended attributes
during the key generation. Meanwhile, in ECP-ABE,
the attribute set used to generate the private key will be
expanded after the extended leaf node transformation.
Therefore, the added calculation expense comes from
the following three factors:
 The transformation from the extended tree to the

standard tree during the encryption phase
 The verification and transformation of the

extended attributes during the key generation
phase

The following experiments illustrate the impact of
the above factors on the actual efficiency.

We use two groups of policy file shown in Table 2
as test samples. One group only contains policies with
the standard attributes which are used as the policies of
the ITHJ09 scheme, and the other only contains
policies with the extended attributes which are used as
the policies of our ECP-ABE scheme. Each group has
10 test policy files to test the efficiency when the
number of attribute node varies from 1 to 10. The
access tree is a two-tier structure when there are 1-4
attribute nodes, a three-tier structure when there are 5-7
attribute nodes, and a four-tier structure when there are
8-10 attribute nodes.
We run three times for each test policy file and get the
average cost as the result. Figure 3 is the result of test.
Discussion: the verification of the extended leaf nodes
and the transformation from the extended tree to the
standard tree nearly have no effect on the performance
during the encryption and key application phase.
However, the ECP-ABE scheme has greatly enhanced
the access policy expression capability.

6. CONCLUSIONS

The paper proposed an ECP-ABE scheme, which
introduces the extended leaf nodes into the access
policy tree to support access policy formulas involving

(c) The decryption time cost
comparison of ECP-ABE scheme

and ITHJ09 scheme

(a) The encryption time cost
comparison of ECP-ABE scheme

and ITHJ09 scheme

(b) The key application time cost
comparison of ECP-ABE scheme

and ITHJ09 scheme
 Figure 3: The efficiency comparison of ECP-ABE and ITHJ09 scheme without repetitive same name attributes

operators including NOT, < , ≤ , >, ≥ in addition to
AND, OR and threshold operators. Hence the scheme
enhanced access control ability prominently, which is
important to data self-protection in open computing
environments.

ECP-ABE adopts the same implementation
mechanism as other CP-ABE schemes. Basing on the
experiments analysis, we can see that our scheme has
nearly the same expense compared with ITHJ09
scheme, and ECP-ABE scheme is proven chosen
plaintext (CPA) secure under the decisional Bilinear
Diffie-Hellman assumption in the standard model.
Hence, ECP-ABE can keep the security and efficiency
properties of the CP-ABE scheme which it based on,
but prominently improves the access capability of the
baseline scheme. Also, the policy extension method
used in ECP-ABE is not limited to the ITHJ09 scheme;
it can be used on other CP-ABE schemes that utilize
tree-based access policy structures.

For future work, it would be interesting to probe
other more efficient way to enhance the access control
capability of CP-ABE schemes, such as working on
other access policy structures like LSSS, or designing
new encryption/decryption algorithms.

7. ACKNOWLEDGMENTS

This work was supported by the National Natural
Science Foundation of China (Grant No.61170088)
and Foundation of the State Key Laboratory of
Software Development Environment (Grant No.
SKLSDE-2011ZX-01).

8. REFERENCES

ATTRAPADUNG, N., HERRANZ, J., LAGUILLAUMIE, F.,
LIBERT, B., DE PANAFIEU, E. & R FOLS, C.
2012. Attribute-based encryption schemes with
constant-size ciphertexts. Theoretical Computer
Science, 422, 15-38.

ATTRAPADUNG, N. & IMAI, H. 2009. Conjunctive
Broadcast and Attribute-Based Encryption. In:
SHACHAM, H. & WATERS, B. (eds.) Pairing-
Based Cryptography – Pairing 2009. Springer
Berlin Heidelberg.

ATTRAPADUNG, N., LIBERT, B. & PANAFIEU, E. 2011.
Expressive Key-Policy Attribute-Based Encryption

with Constant-Size Ciphertexts. In: CATALANO,
D., FAZIO, N., GENNARO, R. & NICOLOSI, A.
(eds.) Public Key Cryptography – PKC 2011.
Springer Berlin Heidelberg.

BEIMEL, A. 1996. Secure schemes for secret sharing and
key distribution. PhD thesis, Israel Institute of
Technology, Technion, Haifa, Israel.

BETHENCOURT, J., SAHAI, A. & WATERS, B.
Ciphertext-Policy Attribute-Based Encryption.
Security and Privacy, 2007. SP '07. IEEE
Symposium on, 20-23 May 2007 2007. 321-334.

BONEH, D. & BOYEN, X. Efficient selective-ID secure
identity-based encryption without random oracles.
Advances in Cryptology-EUROCRYPT 2004,
2004. Springer, 223-238.

CHEN, C., ZHANG, Z. & FENG, D. 2011. Efficient
Ciphertext Policy Attribute-Based Encryption with
Constant-Size Ciphertext and Constant
Computation-Cost. In: BOYEN, X. & CHEN, X.
(eds.) Provable Security. Springer Berlin
Heidelberg.

CHEUNG, L. & NEWPORT, C. 2007. Provably secure
ciphertext policy ABE. Proceedings of the 14th
ACM conference on Computer and
communications security. Alexandria, Virginia,
USA: ACM.

EMURA, K., MIYAJI, A., NOMURA, A., OMOTE, K. &
SOSHI, M. 2009. A Ciphertext-Policy Attribute-
Based Encryption Scheme with Constant
Ciphertext Length. In: BAO, F., LI, H. & WANG,
G. (eds.) Information Security Practice and
Experience. Springer Berlin Heidelberg.

GOYAL, V., JAIN, A., PANDEY, O. & SAHAI, A. 2008.
Bounded Ciphertext Policy Attribute Based
Encryption. In: ACETO, L., DAMG RD, I.,
GOLDBERG, L., HALLD RSSON, M., ING
LFSD TTIR, A. & WALUKIEWICZ, I. (eds.)
Automata, Languages and Programming. Springer
Berlin Heidelberg.

GOYAL, V., PANDEY, O., SAHAI, A. & WATERS, B.
2006. Attribute-based encryption for fine-grained
access control of encrypted data. Proceedings of
the 13th ACM conference on Computer and
communications security. Alexandria, Virginia,
USA: ACM.

IBRAIMI, L., TANG, Q., HARTEL, P. & JONKER, W.
2009. Efficient and Provable Secure Ciphertext-
Policy Attribute-Based Encryption Schemes. In:
BAO, F., LI, H. & WANG, G. (eds.) Information
Security Practice and Experience. Springer Berlin
Heidelberg.

JUNBEOM, H. & DONG KUN, N. 2011. Attribute-Based
Access Control with Efficient Revocation in Data

Outsourcing Systems. Parallel and Distributed
Systems, IEEE Transactions on, 22, 1214-1221.

JUNOD, P. & KARLOV, A. 2010. An efficient public-key
attribute-based broadcast encryption scheme
allowing arbitrary access policies. Proceedings of
the tenth annual ACM workshop on Digital rights
management. Chicago, Illinois, USA: ACM.

LANG, B., FOSTER, I., SIEBENLIST, F.,
ANANTHAKRISHNAN, R. & FREEMAN, T.
2009. A Flexible Attribute Based Access Control
Method for Grid Computing. Journal of Grid
Computing, 7, 169-180.

LEWKO, A., OKAMOTO, T., SAHAI, A., TAKASHIMA,
K. & WATERS, B. 2010. Fully Secure Functional
Encryption: Attribute-Based Encryption and
(Hierarchical) Inner Product Encryption. In:
GILBERT, H. (ed.) Advances in Cryptology –
EUROCRYPT 2010. Springer Berlin Heidelberg.

LI, J., WANG, Q., WANG, C. & REN, K. 2011. Enhancing
Attribute-Based Encryption with Attribute
Hierarchy. Mobile Networks and Applications, 16,
553-561.

LIANG, X., CAO, Z., LIN, H. & SHAO, J. 2009a. Attribute
based proxy re-encryption with delegating
capabilities. Proceedings of the 4th International
Symposium on Information, Computer, and
Communications Security. Sydney, Australia:
ACM.

LIANG, X., CAO, Z., LIN, H. & XING, D. 2009b. Provably
secure and efficient bounded ciphertext policy
attribute based encryption. Proceedings of the 4th
International Symposium on Information,
Computer, and Communications Security. Sydney,
Australia: ACM.

NISHIDE, T., YONEYAMA, K. & OHTA, K. 2008.
Attribute-Based Encryption with Partially Hidden
Encryptor-Specified Access Structures. In:
BELLOVIN, S., GENNARO, R., KEROMYTIS, A.
& YUNG, M. (eds.) Applied Cryptography and
Network Security. Springer Berlin Heidelberg.

SAHAI, A. & WATERS, B. 2005. Fuzzy Identity-Based
Encryption. In: CRAMER, R. (ed.) Advances in
Cryptology – EUROCRYPT 2005. Springer Berlin
Heidelberg.

SAMARATI, P. & DI VIMERCATI, S. D. C. Data
protection in outsourcing scenarios: Issues and
directions. Proceedings of the 5th ACM
Symposium on Information, Computer and
Communications Security, 2010. ACM, 1-14.

SHAMIR, A. 1979. How to share a secret. Commun. ACM,
22, 612-613.

SHAMIR, A. 1985. Identity-based cryptosystems and
signature schemes. Proceedings of CRYPTO 84 on

Advances in cryptology. Santa Barbara, California,
United States: Springer-Verlag New York, Inc.

SU, J., CAO, D., WANG, X., SUN, Y. & HU, L. 2011.
Attribute-based Encryption Schemes. Journal of
Software, 22, 1299-1315.

VIMERCATI, S. D. C. D., FORESTI, S., JAJODIA, S.,
PARABOSCHI, S. & SAMARATI, P. 2010.
Encryption policies for regulating access to
outsourced data. ACM Transactions on Database
Systems (TODS), 35, 12.

WANG, G., LIU, Q. & WU, J. 2010. Hierarchical attribute-
based encryption for fine-grained access control in
cloud storage services. Proceedings of the 17th
ACM conference on Computer and
communications security. Chicago, Illinois, USA:
ACM.

WATERS, B. 2011. Ciphertext-Policy Attribute-Based
Encryption: An Expressive, Efficient, and Provably
Secure Realization. In: CATALANO, D., FAZIO,
N., GENNARO, R. & NICOLOSI, A. (eds.) Public
Key Cryptography – PKC 2011. Springer Berlin
Heidelberg.

ZHIGUO, W., JUN'E, L. & DENG, R. H. 2012. HASBE: A
Hierarchical Attribute-Based Solution for Flexible
and Scalable Access Control in Cloud Computing.
Information Forensics and Security, IEEE
Transactions on, 7, 743-754.

	1. INTRODUCTION
	2. RELATED WORK
	3. ANALYSIS OF CP-ABE SCHEME
	3.1 Preliminaries
	3.1.1 Access Structure
	3.1.2 Shamir secret sharing scheme
	3.1.3 Bilinear Maps
	3.1.4 The Decisional Bilinear Diffie-Hellman Assumption

	3.2 CP-ABE
	3.2.1 Access Tree
	3.2.2 Satisfying an Access Tree
	3.2.3 CP-ABE Algorithms

	4. ECP-ABE SCHEME
	4.1 Extended Leaf Node
	4.2 Transforming an extended policy tree to a standard tree
	4.3 Encryption and Decryption Process of ECP-ABE

	5. ECP-ABE PERFORMANCE ANALYSIS
	5.1 Security
	5.2 Efficiency

	6. CONCLUSIONS
	7. ACKNOWLEDGMENTS
	8. REFERENCES

