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Abstract:  Ciphertext-Policy Attribute Based Encryption (CP-ABE) is recognized as an important data protection 
mechanism in cloud computing environment for its flexible, scalable and fine-grained access control features.  
For enhancing its security, efficiency and policy flexibility, researchers have proposed different schemes of CP-
ABE which have different kinds of access policy structures. However, as far as we know, most of these 
structures only support AND, OR and threshold attribute operations. In order to achieve more effective data self-
protection mechanisms in open environments such as Cloud computing, CP-ABE needs to support more flexible 
attribute based policies, most of which are described using operators of NOT, <, ≤, >, ≥. This paper proposed an 
Extended CP-ABE(ECP-ABE) scheme based on the existing CP-ABE scheme. The ECP-ABE scheme can 
express any access policy represented by arithmetic comparison and logical expressions that involve NOT, <, 
≤, >, ≥ operators in addition to AND, OR and threshold operators. We prove the Chosen-plaintext Attack (CPA) 
security of our scheme under the Decisional Bilinear Diffie-Hellman (DBDH) assumption in the standard model, 
and also discuss the experimental results of the efficiency of ECP-ABE. 

1. INTRODUCTION 

In open computing environment such as cloud 
computing, the protection mechanism of outsourced 
data (sometimes just simply called data) attracts much 
more attentions(Samarati and di Vimercati, 2010, 
Vimercati et al., 2010). These data departs from the 
control domain of its owner and is stored and managed 
by unreliable service providers. Hence, the self-
protection capabilities of data become very important. 
Traditionally, access control and encryption are the two 
basic protection mechanisms for achieving data 
integrity and confidentiality. Self-protection of data 
means that data itself can ensure its integrity and 
confidentiality without depending on other parties. 

Data encryption is the primary data self-protection 
means at present. Traditional Public-Key encryption 
and Identity Based Encryption schemes (Shamir, 1985) 

are designed for one-to-one communication, which 

means the information encrypted by a public key or 
identity can only be decrypted by the specific private 
key. This situation has been changed since Sahai and 
Waters proposed the Attribute Based Encryption 
scheme (Sahai and Waters, 2005), where ciphertexts 
are not necessarily encrypted to one particular user. 
Both users’ private keys and ciphertexts are associated 
with a set of attributes or a policy over attributes. 
When the attributes of a user’s private key can match 
the attributes of the ciphertext in a certain extent, the 
user can be able to decrypt the ciphertext. By defining 
decryption attributes, ABE can dynamically control the 
user group of the encrypted data. 

Goyal et al. further developed this idea and 
introduced two variants of ABE, namely key-policy 
attribute based encryption(KP-ABE) and ciphertext-
policy attribute based encryption(CP-ABE). In KP-
ABE, whose first construction is given by (Goyal et al., 
2006), ciphertext is associated with a set of attributes 



and the secret key is associated with the access tree. A 
user will be able to decrypt if and only if the attributes 
in the ciphertext satisfy his access tree. In CP-ABE, the 
idea is reversed. The ciphertext is associated with the 
access tree and the secret key is associated with a set of 
attributes, and the encrypting party determines the 
decryption policy. 

(Bethencourt et al., 2007) gave the initial structure 
of CP-ABE. We refer to this scheme as BSW07 in this 
paper. BSW07 is relatively expressive and efficient, 
but the security argument is based on generic group 
model, an artificial model which assumes the attacker 
needs to access an oracle in order to perform any group 
operation. After that, many researchers have presented 
different schemes for the less ideal security argument, 
trying to prove the security based on a well-studied 
complexity-theoretic problem. And also there are many 
people worked at improving the efficiency or the 
flexibility of access policy for the CP-ABE scheme. 
These schemes mainly support three kinds of access 
policy structure: AND-gates, tree structure and Linear 
Secret Share Scheme (LSSS) matrix. Among them, the 
tree structure and LSSS matrix are relatively flexible, 
which supports AND, OR and threshold operation. 
BSW07 uses “bag of bits” to express policies 
containing <, ≤, >, ≥. However, this approach is much 
complex and has poor scalability, and is hard to be 
used in practical applications. For NOT operator, 
BSW07 has no solution. To the best of our knowledge, 
there is no efficient way to express an access policy 
that contains operators such as NOT, <, ≤, > and ≥ in 
present CP-ABE schemes, which makes CP-ABE only 
support simple attribute policies.  

Access control and encryption are the two key 
techniques in data-centric protection, and CP-ABE 
makes it possible to integrate these two techniques 
seamlessly. However, the limited access policy 
expression in CP-ABE restricts its access control 
capability. 
Our contribution. In the area of access control, 
Attribute-based Access Control (ABAC) model 
(Junbeom and Dong Kun, 2011, Lang et al., 2009, 
Wang et al., 2010) makes access control decisions 
based on user attributes. The policies in ABAC are 
defined as attribute expressions that contain attributes, 
constants, and AND, OR, NOT, <, ≤, >, ≥ operators, 
and can express complex access control rules. If the 
access policy structure of CP-ABE can be enhanced to 
express complex attribute policies as ABAC, CP-ABE 

will become an ideal scheme for implementing data 
self-protection in open computing environments. 
Following this idea, we proposed the Extended CP-
ABE scheme (ECP-ABE). In ECP-ABE, by 
introducing extended leaf nodes, the access tree of CP-
ABE is enhanced to support all kinds of logical and 
arithmetic comparison operators, including <, ≤, =, >, 
≥ and NOT et al. Therefore, ECP-ABE can realize 
powerful access control as well as encryption, and data 
processed by ECP-ABE will have strong self-
protection capabilities. Our scheme is proven to be 
chosen plaintext (CPA) secure under the decisional 
Bilinear Diffie-Hellman (DBDH) assumption in the 
standard model.  
Organization. The remaining sections are organized as 
follows. In Section 2, we introduce  related work. In 
Section 3, we review the concepts of access structure, 
Shamir’s secret sharing scheme, bilinear maps, DBDH 
assumption and the backgrounds of the CP-ABE 
scheme. We present our extended CP-ABE (ECP-ABE) 
scheme in Section 4. We then discuss the performance 
of ECP-ABE from aspects of security and efficiency in 
Section 5. Finally, we conclude this paper in Section 6.   

2. RELATED WORK 

BSW07 expresses the access policy by a tree structure 
which supports AND, OR and threshold operations. At 
the same time, the length of the ciphertext and the 
encryption or decryption time are linearly related with 
the number of attributes of the access structure tree. 
However, the security proof of BSW07 is based on 
generic group model, rather than the standard 
numerical theoretical assumptions. In addition, as a 
result of using polynomial interpolation to resume 
secret during the decryption phase, BSW07 needs 
greater number of bilinear mapping and exponentiation 
operation, and costs of these operations are relatively 
high. 

After that many scholars have proposed different 
schemes (Su et al., 2011). Cheung and Newport first 
gave the CP-ABE scheme (CN07)(Cheung and 
Newport, 2007) under CPA security based on DBDH 
assumption. However, the scheme only have the AND 
and NOT operator in the access policy structure, and 
the ability of policy expression is poor. Moreover, the 
length of the ciphertext and the key, and the time of 



encryption or decryption are linearly related with the 
number of attributes, which lead to the lower efficiency. 
Goyal et al raised the Bounded Ciphertext Policy 
Attribute Based Encryption scheme (Goyal et al., 2008) 
based on DBDH assumption, which supported the 
AND, OR and threshold operations. (Liang et al., 
2009a, Liang et al., 2009b) shortened the system’s 
public key, the user’s private key and the length of the 
ciphertext and improved the efficiency of encryption 
and decryption based on BCP-ABE. But it limited the 
level of the access policy tree and the number of child 
non-leaf nodes.  

Nishide gave an Attribute-Based encryption scheme 
(Nishide et al., 2008) with partially hidden encryptor-
specified access structures, which only supported the 
AND operation and attributes have more than one 
candidate value. Emura et al first raised the CP-ABE 
with constant ciphertext length based on Nishide’s 
scheme (Emura et al., 2009), which improved the 
efficiency of the algorithm. But it also just supported 
the AND operation. Ibraimi et al gave an efficient and 
provable secure CP-ABE scheme (Ibraimi et al., 2009) 
based on DBDH assumption using the threshold secret 
share technology (Shamir, 1979), which supported 
AND, OR and threshold operations. Its access structure 
was an n-tree and the costs of key generation, 
encryption and decryption are lower than the BSW07 
scheme. Waters has used the LSSS matrix  to express 
the access control policy and pointed out that the 
ability of expression is not lower than the tree 
structure(Waters, 2011).  Lewko et al (Lewko et al., 
2010) also applied the LSSS matrix structure in their 
scheme, which supported any monotone access formula. 
Attrapadung and Imai (Attrapadung and Imai, 2009) 
gave a revocable scheme which admits ciphertext and 
private key sizes roughly the same as the currently best 
(non-revocable) ciphertext-policy ABE.  

In order to support complex Boolean access 
policies, Junod and Karlov (Junod and Karlov, 2010) 
proposed an efficient public-key ABBE scheme 
allowing arbitrary access policies, which is based on a 
modification of the Boneh-Gentry-Waters broadcast 
encryption scheme. Chen et al (Chen et al., 2011) 

presented two new CP-ABE schemes, which have both 
constant-size and constant computation costs for a non-
monotone AND gate policy. Jin et al (Li et al., 2011) 

enhanced the attribute-based encryption with attribute 
hierarchy and obtain a provable secure HABE under 
tree hierarchy. Attrapadung et al(Attrapadung et al., 

2011, Attrapadung et al., 2012) proposed the first KP-
ABE schemes allowing for non-monotonic access 
structures and with constant ciphertext size. Zhiguo et 
al (Zhiguo et al., 2012) proposed a hierarchical 
attribute-set-based encryption (HASBE) scheme which 
extended the ciphertext-policy attribute-set-based 
encryption for access control in cloud computing. 

From the view of security and expressive ability of 
access policy, only the W08 and ITHJ09 scheme 
supported the AND, OR and threshold operation under 
the theoretical assumptions of the standard numerical. 
And the computation cost of encryption and decryption 
of ITHJ09 is lower than W08’s. Therefore, we choose 
ITHJ09 as the basic CP-ABE scheme, and further 
expand the access policy tree of ITHJ09 to construct an 
Extended CP-ABE scheme. 

3. ANALYSIS OF CP-ABE 
SCHEME 

3.1 Preliminaries 

We firstly give formal definition for access structure, 
and then introduce the relevant background 
information on Shamir secret sharing scheme, bilinear 
maps and the Decision Bilinear Diffie-Hellman(DBDH) 
assumption. 

3.1.1 Access Structure 

Definition 1. Access Structure(Beimel, 1996).  
Let { }1 2 nP ,P ,...,P  be a set of parties. A collection 

{ }2A⊆ 1 2 nP ,P ,...,P is monotone if ,B C∀ : if 
B A∈ and B C⊆ then C A∈ . An access structure 
(respectively, monotone access structure) is a 
collection (respectively, monotone collection) A of 
non-empty subsets { }1 2 nP ,P ,...,P , i.e., 

{ }2A⊆ 1 2 nP ,P ,...,P \{∅}。The sets in A are called the 
authorized sets, and the sets not in A are called the 
unauthorized sets. 

In ECP-ABE, the access structure A will contain the 
set of authorized attributes. 

3.1.2 Shamir secret sharing scheme 

In Shamir's secret sharing technique (Shamir, 1979) a 
secret s is divided into n shares in such a way that any 



subset of t shares, where t ≤ n, can together reconstruct 
the secret; no subset smaller than t can reconstruct the 
secret. The technique is based on polynomial 
interpolation where a polynomial y = f(x) of degree t-1 
is uniquely defined by t points (xi, yi). The details of the 
scheme are as follows: 

1. Setup. The dealer D wants to distribute the 
secret s > 0 among t users. 
a) D chooses a prime p > max(s,n), and 

define a0 = s. 
b) D selects t-1 random coefficients a1,…,at-1, 

0 ≤ aj ≤ p-1, and define the random 
polynomial over ℤp : 

1

0
( ) t j

jj
f x a x−

=
=∑  

c) D computes si=f(i) mod p, and sends 
securely the share si to user pi together 
with the public index i.  

2. Pooling of shares. Any group of t or more users 
pool their distinct shares (x,y)=(i,si) allowing 
computation of the coefficients aj of f(x) by 
Lagrange interpolation, 
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The secret s is f(0) = a0. 

3.1.3 Bilinear Maps 

Let 𝔾 and 𝔾T be two multiplicative cyclic groups of 
prime order p. Let g be a generator of 𝔾 and e be a 
bilinear map, e: 𝔾 × 𝔾 → 𝔾T, with the following 
properties: 
 Bilinearity: for all x, y∈ 𝔾 and a,b∈ℤp, we have 

e(xa,yb) = e(x,y)ab. 
 Non-degeneracy: e(g, g) ≠ 1 

If the group operation in 𝔾 and the bilinear map e 
are both efficiently computable, the multiplicative 
cyclic group 𝔾 is a bilinear group. Notice that the map 
e is symmetric since e(ga, gb) = e(g,g)ab= e(gb, ga). 

3.1.4 The Decisional Bilinear Diffie-Hellman 
Assumption 

Let a, b, c∈ℤp be chosen randomly, Z be the random 
element from 𝔾T and g be a generator of 𝔾 (𝔾 and 𝔾T 
be two multiplicative cyclic groups mentioned in 3.1.3). 
The decisional BDH assumption(Boneh and Boyen, 
2004, Sahai and Waters, 2005) is that no probabilistic 

polynomial-time algorithm β can distinguish the tuple 
<ga, gb, gc, e(g, g)abc > from the tuple <ga, gb, gc, Z) 
with more than a negligible advantage ε : 

| Pr[ ( , , , ( , ) ) 0] Pr[ ( , , , ) 0] |a b c abc a b cg g g e g g g g g Zε β β= = − =  
    Here the probability is over the random choice of Z 
in 𝔾T, the random choice of a, b, c in Zp, and the 
random bits of β. 

3.2 CP-ABE 

3.2.1 Access Tree 

Definition 2. Access Tree (Bethencourt et al., 2007). 
Let 𝒯 be a tree representing an access structure. Each 
non-leaf node of the tree represents a threshold gate, 
described by its children and a threshold value. If numx 
is the number of children of a node x and kx is its 
threshold value, then 0<kx<numx. When kx=1, the 
threshold gate is an OR gate and when kx=numx, it is an 
AND gate. Each leaf node x of the tree is described by 
an attribute and a threshold value kx=1. 

We define tree functions over the tree. The function 
parent(x) represents the parent of node x. If x is a leaf 
node, we define the function attr (x) to denote the 
attribute with the leaf node. As the access tree has an 
ordering between the children of every node, the 
function index(x) represents the index number of each 
child node. 

3.2.2 Satisfying an Access Tree 

Definition 3. Satisfied Access Tree (Bethencourt et al., 
2007). Let 𝒯 be an access tree with root r. Denote by 
𝒯x the subtree of 𝒯 rooted at the node x. Thus, 𝒯 is the 
same as 𝒯r. If a set of attributes γ satisfies the access 
tree 𝒯x, we denote it as 𝒯x(γ)=1. We compute 𝒯x(γ) 
recursively as follows. If x is a non-leaf node, evaluate 
𝒯x'(γ) for all children x' of node x. 𝒯x(γ) returns 1 if and 
only if at least kx children return 1. If x is a leaf node, 
then 𝒯x(γ) returns 1 if and only if att(x) ∈γ. 

3.2.3 CP-ABE Algorithms 

The ciphertext-policy attribute based encryption 
scheme consists of four fundamental algorithms 
(Bethencourt et al., 2007): Setup, Encrypt, Key 
Generation, and Decrypt.  



Setup (k). The setup algorithm takes no input other 
than the security parameter k. It outputs the public 
parameters PK and a master key MK. 
Key-Generation (MK, S). The key generation 
algorithm takes as input the master key MK and a set of 
attributes S that describe the key. It outputs a private 
key SK. 
Encrypt (PK, M, A). The encryption algorithm takes 
as input the public parameters PK, a message M, and 
an access structure A over the universe of attributes. 
The algorithm will encrypt M and produce a ciphertext 
CT such that only a user that possesses a set of 
attributes that satisfies the access structure will be able 
to decrypt the message. We will assume that the 
ciphertext implicitly contains A. 
Decrypt (PK,CT, SK). The decryption algorithm takes 
as input the public parameters PK, a ciphertext CT 
which contains an access policy A, and a private key 
SK. If the set S of attributes satisfies the access 
structure A then the algorithm will decrypt the 
ciphertext and return a message M, otherwise return the 
error symbol ⊥. 

4. ECP-ABE SCHEME 

The ITHJ09 used Shamir secret sharing technique to 
support AND, OR and of (threshold) nodes based on 
CP-ABE scheme. The access policy tree is n-ary tree. 

Each node has two attributes: the number of child 
nodes n and threshold value t (1≤t≤n). When t =1, it’s 
an OR gate; when t = n, it’s an AND gate; when 1<t<n, 
it’s an of gate. The leaf node associates policy 
properties and its value t is 1. The ECP-ABE scheme 
we proposed is based on the ITHJ09 scheme and we 
extend the access tree to make it be able to express the 
complex policies that contain arithmetic and logical 
expressions.  

4.1 Extended Leaf Node 

The universal attribute set U is published by the 
Trusted Authority. Each user has his or her attribute set 
w which is used for key generation and we refer to it as 
the basic attribute set. In Attribute Based Access 
Control system, user’s access right could be 
dynamically calculated according to his security 
character and the resource he applied for. Inspired by 
this, we extend the leaf node of the access policy tree. 

We replace the original leaf node with the operator 
node and give it two children, which we refer to as the 
attribute name node and the attribute value node, as 
shown in Figure 1(a). The operator node, the attribute 
name node and the attribute value node compose an 
extended leaf node, and the attribute expression 
described by an extended leaf node is called an 
extended attribute, for instance, the attribute “age>18” 
is an extended attribute. Meanwhile, the range of 
threshold value t of the extended leaf node is less than 
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0 from the original value 1. 
The operator node only has the threshold value t 

(t<0). Different value of t denotes specific operator, for 
instance, t = -1 for not operator, t = -2 for > operator. 
The attribute name/value node denotes the attribute 
name and the attribute value respectively that are 
associated with the operator. With this structure, we 
can express policy attributes using operators of not, <, 
≤, >, ≥ . Figure 1(b) is an example of this structure, 
which express the policy attribute “school not 
software-engineering”.  

ECP-ABE scheme augments two kinds of operators: 
comparison operators and logic operators.  
 Comparison operators:<, ≤, >, ≥. 
 Logic operators: not. 

The values of t and the corresponding operator that 
each value represents are defined in Table 1. 

Table 1: Values of t and its corresponding operator. 

Value t Operator 
-1 not 
-2 < 
-3 > 
-4 ≤ 
-5 ≥ 

4.2 Transforming an extended policy 
tree to a standard tree 

Now we define the extended policy tree as the 
extended tree T* and the original tree is called the 
standard tree T. An extended tree can be transformed 
to an equivalent standard tree by removing the attribute 
name/value node, converting the operator node to the 

standard leaf node and then assigning the attribute 
expression described by the extended leaf node as an 
extended attribute to the stand leaf node. The extended 
tree T* and the standard tree T express the same access 
policy. For example, the extended tree in Figure 2(a) 
can be transferred into the standard tree in Figure 2(b).  

The user expresses the access policy using the 
extended tree and makes it the parameter for the 
encryption. The encryption algorithm will firstly 
transform the extended tree to a standard tree, and then 
encrypts the message using the standard access policy 
tree. Finally, we attach the extended tree in the 
ciphertext. 

To decrypt the ciphertext, the decryption party needs 
to apply the secret key by giving PKG his basic 
attribute set and the extended parts of the access tree. 
At the PKG side, we use the attribute verification 
algorithm as shown in Algorithm 1 to verify and 
transform an extended leaf node. 

ALGORITHM 1: Attribute Verification 
1: Get the expression exp(N.O.V) of the extended 

leaf node, where N, O and V denote the basic 
attribute name, the operator and the attribute 
value respectively; 

2: Traverse the basic attribute set A’ to find the 
basic attribute N and its value V’; 

3: Let N=V’, and calculate the expression 
exp(N.O.V); 

4: if the value of exp(N.O.V) is true 
5:   Convert exp(N.O.V) to string S=“N.O.V” 
6:   return S; 
7: else  
8:   return null; 
9: end if 
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This algorithm will first get user’s basic attribute set 
and then traverse the attribute set to check whether or 
not the attribute N satisfies the expression exp(N.O.V). 
If the answer is yes, it returns the string form of 
exp(N.O.V), i.e. “attribute name operator attribute 
value” which is regarded as an extended attribute of 
the user. Otherwise it will return null. 

Here is an example of the transformation. 
There is a file F in a campus network system and 

the file has an access policy: “It can be accessed if and 
only if the user is a teacher under age of 40 or an older 
than 18-year-old student who is not in school of 
software-engineering”. So, we can give the policy “T* 
= (student ∧ school not software-engineering ∧ age > 
18) ∨ (teacher ∧ age < 40)”, and the extended access 
tree for this policy is shown in Figure 2(a). Figure 2(b) 
is the standard access tree which converts from the 
extended tree in figure 2(a). The encryption party 
encrypts the file F with T and attaches T* in the 
ciphertext. 

Suppose user A and user B wants to decrypt the file 
F. The basic attributes of A is {student, 
school=computer science, age=20}, and the basic 
attributes of B is {student, school=computer science, 
age=17}. Firstly, Both A and B need to extract the 
extended parts of T* from the ciphertext and send them 
with their basic attribute set to PKG. Then, PKG 
verifies and generates the new attribute set {student, 
school not software-engineering，age > 18} for A, and 
the new attribute set { student，school not software-
engineering， age = 17} for B. The corresponding 
private keys are generated using these new attribute 
sets by PGK concurrently. Obviously, user B’s 
attribute set doesn’t satisfy the access policy, hence 
user A can decrypt the file F while user B can’t. 

4.3 Encryption and Decryption Process 
of ECP-ABE 

The encryption party expresses the access policy with 
an extended tree and the tree in the ciphertext is also in 
the extended structure. However, when encrypts a 
message, the encryption algorithm will first transform 
the extend tree to an equivalent standard tree and 
encrypt the message using the standard one. So in the 
encryption phase, we can use the algorithm of ITHJ09 
scheme. For ciphertexts that encrypted under different 
extended access trees, users have to apply for different 

secret keys, since PKG need to verify and generate 
extended attributes according to the extended tree and 
user’s basic attributes. Detailed encryption and 
decryption processes are described as follows. 

a. Initialize: the system initializes and generates 
public parameter pk and master key mk. It gives 
pk to the encryption party. The description of 
initialization algorithm Setup (k) is as follow. 

i. Generate a bilinear group G of prime order p 
with a generator g and a bilinear map e:G × G 
→ GT. 

ii. Generate the attribute set U = {a1,a2,…,am}, for 
some integer m, and random   elements α, t1, 
t2,…,tm ∈Zp

*. Let y = e(g,g)α, Tj = gtj (1≤ j ≤ m). 
The public key is pk = (e, g, y, Tj(1≤ j ≤ m)), 
and the master key is mk = (α, tj (1≤ j ≤ m)). 

b. Specify the access policy: the encryption party 
specifies access policy, which is expressed by an 
extended tree T*. 

c. Encryption: the encryption party calls the 
encryption algorithm Encrypt (m, T*, pk) with 
plaintext m, the extended tree T* and the public 
parameter pk. The encryption algorithm will first 
transform T* to the equivalent standard tree T, and 
then encrypt m under T using Shamir’s secret 
sharing technique. Finally it returns the ciphertext 
CT which contains T*, such that only users who 
have the secret key generated from the attributes 
that satisfy T* will be able to decrypt the message. 
The detail description is as follows: 
i. Convert the T* to the standard tree T; 

ii. Select a random element s ∈Zp
* and compute 

c0 = gs and c1= M⋅ys = M⋅e(g,g) αs 
iii. Set the value of the root node of T to be s, 

mark all child nodes as un-assigned, and mark 
the root node assigned. Recursively, for each 
un-assigned non-leaf node, do the following: 

If its child nodes are un-assigned， the 
secret s is divided using (t,n)-Shamir secret 
sharing technique. The relation of n and t is: if 
the symbol is of then 1 < t < n; if the symbol is 
AND, then t = n; if the symbol is OR, then t = 
1. To each child node a share secret si = f(i) is 
assigned. Mark this node assigned. 

iv. For each leaf attribute aj,i ∈T, compute cj,i = 
Tj

si, where i denote the index of the attribute in 
the access tree.  



v. Return the ciphertext: CT = (T, c0, c1, ∀aj,I ∈ 
T:cj,i). 

d. Secret key request: when a user gets CT and 
wants to decrypt, he first needs to analyze the 
structure of T* and find the extended parts, then 
apply for the secret key by giving PKG his basic 
attribute set w and the extended parts of the 
access tree. 

e. Secret key generation: PKG first verify the 
user’s basic attribute. If the basic attributes of the 
user are authenticated, PKG will extract the 
attribute name, the attribute value and the 
operator, and run Algorithm 1. Attributes in w 
that satisfy the extended leaf node will be 
replaced by the returned extended attributes. 
Finally PKG gets the new attribute set w* and 
generates the secret key skw* corresponds to w* 
and sends it back to the user. The detailed 
description is as follows: 
i. Select a random value r ∈Zp

*, d0 = gα- r. 

ii. For each attribute aj in w, compute dj =
1−

jrtg . 
iii. Return the secret key skw =(d0,∀aj ∈ w:dj) 

f. Decryption: the user calls the decryption 
algorithm Decrypt(CT, skw

*). The algorithm 
returns message m if the smallest attribute set w’ 
∈ w* that corresponds to skw

*  satisfies T. 
Otherwise it returns an error symbol ⊥. More 
details are as follows: 
For every attribute aj ∈ w’,  computing: 
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li(0) is a Lagrange coefficient and can be 
computed by everyone who knows the index of the 
attribute in the access tree. 
Correctness Proof: 
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5. ECP-ABE PERFORMANCE 
ANALYSIS 

5.1 Security 

The major contribution of ECP-ABE scheme is the 
extension of the access tree. The core 
encryption/decryption algorithm of ECP-ABE is based 
on ITHJ09 scheme. In ITHJ09 scheme semantic 
security under chosen-plaintext attack (CPA) is 
modeled by IND-sAtt-CPA game. The security model 
of ECP-ABE will still be based on IND-sAtt-CPA 
game, but the challenging access tree provided by the 
adversary in Init phase will be an extended tree instead 
of a standard tree. IND-sAtt-CPA game of ECP-ABE 
security model is as follows: 
 Init. The adversary A chooses the challenge 

access tree T* and gives it to the challenger, T* 
is an extended tree. 

 Setup. The challenger runs Setup to 
generate(pk,mk) and gives the public key pk to 
adversary A. The challenger also transforms T* 
to the equivalent standard tree T. 

 Phase1. Adversary A makes a secret key 
request to the Keygen oracle for any attribute 
set w = { aj | aj ∈U}, with the restriction aj ∉ T* 
and aj does not satisfy the policy attribute 
requirement expressed by the extend part of T*. 
The challenger runs Algorithm 1 to generate 
extended attribute set w* and then returns 
Keygen(w*, mk). 

 Challenge. Adversary A sends to the challenger 
two equal length messages m0, m1. The 
challenger picks a random bit b ∈ {0,1} and 
returns Cb = Encrypt(mb, T*, pk). 

 Phase2. Adversary A can continue querying 
Keygen oracle with the same restriction as in 
Phase1. 

 Guesss.  Adversary A outputs a guess b’ ∈ 
{0,1}. 

The advantage of A winning this game is defined as:  
ε = |Pr[b’=b] – 1/2|. 



Definition 1 ECP-ABE scheme is said to be secure 
against an adaptive chosen-plaintext attack(CPA) in 
the standard model if any polynomial-time adversary 
has only a negligible advantage in the above IND-sAtt-
CPA game. 

In the above game, adversary A uses an extended 
tree to challenge instead of a standard tree. We have 
the following analyse: 

1. The limitation for the basic attribute set w = { aj 
| aj ∈ U } provided by adversary A in Phase1 is 
aj ∉ T* and aj does not satisfy the policy 
attribute requirement expressed by the extended 

part of T*. According to this limitation, we can 
infer that ∀bj

*∈w* ， bj
*∉T. So in Phase1, 

changes of access tree will not introduce any 
new security problem, i.e. the secret key that A 
gets could not decrypt the ciphertext Cb. 

2. Although adversary A submits the extended tree 
T* in Init phase, message mb is encrypted under 
standard tree T. Transformation between T* and 
T is public. In Phase1, Challenge and Phase2, 
adversary A could design the query and 
challenge against T*. So the attacking ability of 
A keeps the same. 

Table 2 the test samples without repetitive same name attributes 
 1-4 attribute nodes 

（4 nodes for instance） 
5-7 attribute nodes 

（6 nodes for instance） 
8-10 attribute nodes 

（9 nodes for instance） 

St
an

da
rd

 a
ttr

ib
ut

e 
po

lic
y 

∧

security_level=7 salary=7500 gender=M age=24

 

∧

∧ ∧

security_
level=7

name=Sky

gender=M age=24expired_date=
2013-01-01

department=
product-

development  

∧

∧ ∧

security_
level=7

name=Sky gender=M

age=24

∧

expired_date=
2013-01-01

department=
product-

development

salary=7500project_name=
maintenance-

group

office_locati
on=

BuildingC-1

 
security_ level=7 
∧salary=7500 
∧gender=M 
∧age=24 

(security_level=7 
∧gender=M) 
∧(department=product 
∧expired_date=201301 
∧age=24) 
∧name=Sky 

(security_level =7 
∧department=product) 
∧(name=Sky 
∧gender=M 
∧(office =BC-1 
∧project =T1 
∧age=24∧salary=7)) 
∧expired_date=201301 

Ex
te

nd
ed

 a
ttr

ib
ut

e 
po

lic
y 

∧

not not ≥ ≥

id Bob@gmail.com name Tom salary 7000 security_level 4

 

∧

∧ ∧ ≥ 

security_level

age

≥ ≥ not not not

7

25 salary 9000 depart
ment

accoun
ting

name Jackid

 

∧

∧ ∧ ≥

age

≥ ≥ not not ∧

not not not not

20 salary 5000

7
Security
_level

accountingdepartment Tomname

primary-
title

profes
sional
_title

BuildingA-1office_
location

Bob@gmail.comidsales-group1projec
t_name

 
(id not Bob@gmail.com) 
∧(name not Tom) 
∧(salary≥7000) 
∧(security_level≥4) 

(age≥25)∧(salary≥9000) 
∧(department not account) 
∧(id not Tom@gmail.com) 
∧(name not jack) 
∧(security_level ≥7 ) 

(age≥20)∧(salary≥5000) 
∧(department not account) 
∧(name not tom) 
∧(project not S1) 
∧(id not Bob@gmail.com) 
∧(office not A1) 
∧(professional not PA) 
∧(security_level ≥7 ) 



Hence, we can conclude that in ECP-ABE scheme 
the advantage of A in the IND-sAtt-CPA game equals 
to the advantage of A in ITHJ09 scheme, i.e. in ECP-
ABE scheme any polynomial-time adversary has only a 
negligible advantage in the IND-sAtt-CPA game. 
So ECP-ABE scheme is secure against an adaptive 
chosen-plaintext attack(CPA) in the standard model. 
Our extension for the access tree will not lower the 
system security compared with ITHJ09. 

5.2 Efficiency 

In ITHJ09 scheme, encryption requires |T|+1 
exponentiations in 𝔾 and one exponentiation in 𝔾T and 
|T| is the number of attributes in the access tree T. Key 
generation requires |w|+1 exponentiations in 𝔾, w is the 
attribute set the user has. Decryption requires |w’|+1 
pairing operations, |w’| multiplications, w’ is the set of 
attributes satisfying the access tree, w’ ⊆ w.  

ECP-ABE uses the encryption and decryption 
algorithms of ITHJ09 scheme, so the calculation 
expenses and the length of ciphertext are the same as 
ITHJ09. The ECP-ABE scheme has two main 
differences compared with ITHJ09 scheme: the ECP-
ABE has the conversion from an extended tree to a 
standard tree during the encryption; it also has the 
verification and transformation of extended attributes 
during the key generation. Meanwhile, in ECP-ABE, 
the attribute set used to generate the private key will be 
expanded after the extended leaf node transformation. 
Therefore, the added calculation expense comes from 
the following three factors: 
 The transformation from the extended tree to the 

standard tree during the encryption phase 
 The verification and transformation of the 

extended attributes during the key generation 
phase 

The following experiments illustrate the impact of 
the above factors on the actual efficiency.  

We use two groups of policy file shown in Table 2 
as test samples. One group only contains policies with 
the standard attributes which are used as the policies of 
the ITHJ09 scheme, and the other only contains 
policies with the extended attributes which are used as 
the policies of our ECP-ABE scheme. Each group has 
10 test policy files to test the efficiency when the 
number of attribute node varies from 1 to 10. The 
access tree is a two-tier structure when there are 1-4 
attribute nodes, a three-tier structure when there are 5-7 
attribute nodes, and a four-tier structure when there are 
8-10 attribute nodes.  
We run three times for each test policy file and get the 
average cost as the result. Figure 3 is the result of test. 
Discussion: the verification of the extended leaf nodes 
and the transformation from the extended tree to the 
standard tree nearly have no effect on the performance 
during the encryption and key application phase. 
However, the ECP-ABE scheme has greatly enhanced 
the access policy expression capability. 

6. CONCLUSIONS 

The paper proposed an ECP-ABE scheme, which 
introduces the extended leaf nodes into the access 
policy tree to support access policy formulas involving 

(c) The decryption time cost 
comparison of ECP-ABE scheme 

and ITHJ09 scheme 
 

(a) The encryption time cost 
comparison of ECP-ABE scheme 

and ITHJ09 scheme 

(b) The key application time cost 
comparison of ECP-ABE scheme 

and ITHJ09 scheme 
 Figure 3: The efficiency comparison of ECP-ABE and ITHJ09 scheme without repetitive same name attributes 



operators including NOT, < , ≤ , >, ≥ in addition to 
AND, OR and threshold operators. Hence the scheme 
enhanced access control ability prominently, which is 
important to data self-protection in open computing 
environments. 

ECP-ABE adopts the same implementation 
mechanism as other CP-ABE schemes. Basing on the 
experiments analysis, we can see that our scheme has 
nearly the same expense compared with ITHJ09 
scheme, and ECP-ABE scheme is proven chosen 
plaintext (CPA) secure under the decisional Bilinear 
Diffie-Hellman assumption in the standard model. 
Hence, ECP-ABE can keep the security and efficiency 
properties of the CP-ABE scheme which it based on, 
but prominently improves the access capability of the 
baseline scheme. Also, the policy extension method 
used in ECP-ABE is not limited to the ITHJ09 scheme; 
it can be used on other CP-ABE schemes that utilize 
tree-based access policy structures.  

For future work, it would be interesting to probe 
other more efficient way to enhance the access control 
capability of CP-ABE schemes, such as working on 
other access policy structures like LSSS, or designing 
new encryption/decryption algorithms. 
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