Online Appendix to:
NN-EMD: Efficiently Training Neural Networks
using Encrypted Multi-sourced Datasets

Runhua Xu, James Joshi, Senior Member, IEEE and Chao Li

1. DIFFERENCE BETWEEN HOMOMORPHIC ENCRYPTION AND FUNCTIONAL ENCRYPTION

Homomorphic Encryption (HE) is a form of cryptosystem with an additional evaluation capability for computing over ciphertexts
without access to the private secret key, in which the result of operations over the ciphertexts, when decrypted, match the result
of operations as if they have been performed on the original plaintext. Some typical types of HE are partially homomorphic,
somewhat homomorphic, leveled fully homomorphic, and fully homomorphic encryption according to the the capability of
performing different classes of computations. Unlike traditional encryption scheme that includes three main algorithms: key
generation (Gen), encryption (Enc), and decryption (Dec), an HE scheme also has an extra evaluation (Eval) algorithm.
Formally, a HE scheme Eyg includes the above four algorithms such that

EHE.Decsk(EHE.EUCLlpk(f, EHE.Encpk (ml), veey LC:HE.I?’I’LCI)]€ (mn))) = f(ml, seuy mn),

where {mj,...,m,} are the message to be protected, pk and sk are the key pairs generated by the key generation algorithm.
Regarding recent emerging deep neural networks model, the CryptoNets[1] tries to apply neural networks to encrypted data
by employing a leveled homomorphic encryption scheme to the training data, which allows adding and multiplying encrypted
messages but requires that one knows in advance the complexity of the arithmetic circuit. Besides, the work in [2] uses the
open-source FHE toolkit HEIib for neural network training in a stochastic gradient descent training method.

Functional Encryption (FE) is another form of cryptosystem that also supports the computation over the ciphertext. Typically,
the FE &g includes four algorithms: setup, key generation, encryption and decryption algorithms such that

Ere-Decgy, (Epp-Encpr(ma), ..., Eep-Encpr(my)) = f(ma, ..., my),

where the setup algorithm creates a public key pk and a master secret key msk, and key generation algorithm uses msk to
generate a new functional private key sk; associate with the functionality f. Those two algorithms usually are run by the a
trusted third-party authority.

As presented above, the main similarity between the FE and HE support the computation over the ciphertext. In a high-level
respective, the main difference between the functional encryption and the homomorphic encryption is that given an arbitrary
function f(-), the homomorphic encryption allows to compute an encrypted result of f(x) from an encrypted z, whereas the
functional encryption allows to compute a plaintext result of f(x) from an encrypted x. Intuitively, the function computation
party in the HE scheme (i.e. the evaluation party) can only contribute its computation resource to obtain the encrypted function
result, but cannot learn the function result unless it has the secret key, while the function computation party in the FE scheme
(i.e., usually, the decryption party) can obtain the function result with the issued functional private key. Besides, expect for
several most recently proposed decentralized FE schemes, the classic FE schemes are relied on a trusted third-party authority
to provide key service such as issuing a functional private key associated to a specific functionality.

Unlike the HE-based secure computation techniques that have been widely adopted as an candidate solution for the secure
computation for privacy-preserving machine learning (PPML), recently proposed FE-based PPML solutions such as in [3],
[4], [5] also show its promise in efficiency and practicality. The proposal in [5] proposes a practical framework to perform
partially encrypted and privacy-preserving predictions which combines adversarial training and functional encryption. The work
in [4] initialize a CryptoNN framework that supports training a neural network model over encrypted data by using the FE
to construct the secure computation mechanism. In addition, the proposal in [3] focuses on the privacy-preserving federated
learning (PPFL) by utilizing the FE to construct the secure aggregation protocol to protect each participant’s input in the PPFL.

II. ADOPTED FUNCTIONAL ENCRYPTION SCHEMES IN DETAIL
Here we present the underlying adopted functional encryption schemes in our NN-EMD framework.
R. Xu and J. Joshi are with School of Computing and Information, University of Pittsburgh, PA, USA, 15260. C. Li is with Beijing Key Laboratory of

Security and Privacy in Intelligent Transportation, Beijing Jiaotong University, Beijing, China, 100044.
Emails: runhua.xu@pitt.edu, jjoshi@pitt.edu,li.chao@bjtu.edu.cn

A. Single-Input Functional Encryption for Inner-Product

We adopt the single-input functional encryption for inner-product (SI-FEIP) proposed in [6]. In SI-FEIP scheme, the supported

function is described as "

fsup(z,y) = Z(%‘yi) st [z = [yl =n,

i=1
where 2 and y are two vectors of length 7, from different parties. The SI-FEIP scheme Fs includes four algorithms: Setup,
SKGenerate, Encrypt, Decrypt. Here, each algorithm is constructed as follows.

e Setup(1*,n): This algorithm generates a master private key and common public key pair (pkcom, msk) based on a given
security parameter A and vector length parameter 7. Specifically, on the inputs of security parameters A and 7, the algorithm
first generates two samples as follows:

(G, p, g) +s GroupGen(17)

8= (51,...,8,) s Z]
and then sets pk.o, and msk as follows:

pkcom = (97 h; = gsyi)ié[l,...,n]
msk = s

It returns the pair (pkcom, msk).
o SKGenerate(msk,y): This algorithm takes the master private key msk and one vector y as input, and generates a
functionally derived key sk, = (y,s) as output.
o Encrypt(pkcom, x): This algorithm outputs ciphertext ct of vector z using the public key pk.om. Specifically, the algorithm
first chooses a random 7 ¢—s Z,, and computes
cty = gr.
For each i € [1,...,7)], it computes
ct; =h; - g*i.

Then the algorithm outputs the ciphertext ct = (cto, {cti }ic1,... m))-
e Decrypt(pkcom, ct, sk, y): This algorithm takes the ciphertext ct, the public key pkcom and functional key sky, for
the vector y as input, and returns the inner-product fsyp(,y). Specifically, the algorithm firstly compute the discrete

logarithm in basis g as follows
gy = H ct,i-“/ct‘gkf.

i€[l,...,m]

Then, fsup(z,y) = (x,y) could be recovered.

B. Multi-Input Functional Encryption for Inner-Product

We employ the multi-input functional encryption for inner-product (MI-FEIP) construction derived from the work proposed
in [7]. In the MI-FEIP scheme, the support function is defined as

no 1

S ((T1,22, .., Tn),y) = ZZ(Iuyz;‘; nk+j) st || =ns, [yl = Z%
i=1

i=1 j=1
where z; and y are vectors from different parties.

Accordingly, the MI-FEIP scheme JFy includes five algorithms: Setup, PKDistribute, SKGenerate, Encrypt, Decrypt Below,
we present the construction of each algorithm:

o Setup(1*,1j,n): It generates a master private key and public key pair (pkcom, mpk, msk) given security parameter \ and
functional parameters 77 and n, where n is the maximum number of input parties while 7 is a vector where each element
represents the maximum input length vector of the corresponding party, and hence |7j| = n. Specifically, the algorithm
first generates secure parameters as

G = (G, p, g) +s GroupGen(1*),

Then, it generates several samples as
a=(1l,a)T,a4sZ,
Wi« Z1i"? i€ l,..,n]
u; <—$Zgb,2 S []., ,n]

(6]
(71

Then, it generates the keys as

pkcom = (Gap7 g)
mpk = (G, g%, g"*),
msk = (W, (u:)ie[1,... n))-

PKDistribute(mpk,msk, id;): It delivers the public key pk; for party id; given the master public/private keys. Specifically,
it looks up the existing keys via id; and returns the public key as

pki - (g7ga7 (Wa’)iaui)'

SKGenerate(mpk, msk,y): It takes the master public/private keys and vector y as inputs, and generates a function derived
key sk, as output. Specifically, the algorithm first partitions y into (y1||y2||...||yn), Where |y;| is equal to n;. Then it
generates the function derived key as follows:

skiy=({d] < yl]W;}, z + Zygul)

Encrypt(pk;,x;): It outputs ciphertext ct of vector x; using the public key pk;. Specifically, the algorithm first generates
a random nonce r; <—g Z,, and then computes the ciphertext as follows:

cti = (t; """ ¢ g7igtig W),
Decrypt(pkcom, Sct, 8k fy,): It takes the ciphertext set S¢¢, the public key pkcom and functional key sk, as input, and
returns the inner-product fyunp({z;},y). Specifically, the algorithm first calculates as follows:

[Licp,....n(wicil/[d]ti])

c= :
z

and then recovers the function result as

f((.’l}l,.'l:27 ---71'77,)7/!/) = 1Ogg(c)

REFERENCES

Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter, Michael Naehrig, and John Wernsing. Cryptonets: Applying neural networks to encrypted
data with high throughput and accuracy. In ICML, pages 201-210, 2016.

Karthik Nandakumar, Nalini Ratha, Sharath Pankanti, and Shai Halevi. Towards deep neural network training on encrypted data. In CVPR Workshops,
2019.

Runhua Xu, Nathalie Baracaldo, Yi Zhou, Ali Anwar, and Heiko Ludwig. Hybridalpha: An efficient approach for privacy-preserving federated learning.
In Proceedings of the 12th ACM Workshop on Artificial Intelligence and Security, pages 13-23, 2019.

Runhua Xu, James Joshi, and Chao Li. Cryptonn:training neural networks over encrypted data. In 2019 39th IEEE International Conference on Distributed
Computing Systems (ICDCS), pages 1199-1209. IEEE, 2019.

Théo Ryffel, Edouard Dufour Sans, Romain Gay, Francis Bach, and David Pointcheval. Partially encrypted machine learning using functional encryption.
arXiv preprint arXiv:1905.10214, 2019.

Michel Abdalla, Florian Bourse, Angelo De Caro, and David Pointcheval. Simple functional encryption schemes for inner products. In JACR PKC, pages
733-751. Springer, 2015.

Michel Abdalla, Dario Catalano, Dario Fiore, Romain Gay, and Bogdan Ursu. Multi-input functional encryption for inner products: function-hiding
realizations and constructions without pairings. In CRYPTO, pages 597-627. Springer, 2018.

