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Abstract—Increasingly, information systems rely on computational, storage, and network resources deployed in third-party facilities
such as cloud centers and edge nodes. Such an approach further exacerbates cybersecurity concerns constantly raised by numerous
incidents of security and privacy attacks resulting in data leakage and identity theft, among others. These have, in turn, forced the
creation of stricter security and privacy-related regulations and have eroded the trust in cyberspace. In particular, security-related
services and infrastructures, such as Certificate Authorities (CAs) that provide digital certificate services and Third-Party Authorities
(TPAs) that provide cryptographic key services, are critical components for establishing trust in crypto-based privacy-preserving
applications and services. To address such trust issues, various transparency frameworks and approaches have been recently
proposed in the literature. This paper proposes TAB framework that provides transparency and trustworthiness of third-party authority
and third-party facilities using blockchain techniques for emerging crypto-based privacy-preserving applications. TAB employs the
Ethereum blockchain as the underlying public ledger and also includes a novel smart contract to automate accountability with an
incentive mechanism that motivates users to participate in auditing, and punishes unintentional or malicious behaviors. We implement
TAB and show through experimental evaluation in the Ethereum official test network, Rinkeby, that the framework is efficient. We also
formally show the security guarantee provided by TAB, and analyze the privacy guarantee and trustworthiness it provides.

Index Terms—Transparency, Trustworthiness, Third-party Authority, Blockchain, Ethereum, Smart Contract, Functional Encryption
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1 INTRODUCTION

INCREASINGLY, information systems are being built on
the third-party facilities or use external services. This is

beneficial to many enterprises as it lowers costs and allows
them to keep their focus on business missions. On the other
hand, increasing cybersecurity incidents such as cyberse-
curity attacks including those leading to data leakage and
identity theft are amplifying users’ concerns with regards
to their sensitive personal data that is collected, stored, and
processed on the third-party facilities. Furthermore, regula-
tions such as General Data Protection Regulation (GDPR)
and California Consumer Privacy Act (CCPA) introduce
stricter compliance requirements for enterprise informa-
tion systems. Fig. 1 illustrates the architecture of a typical
privacy-preserving third-party service enabled system, as
illustrated in a variety of existing work [1], [2], [3], [4],
where the personal data is protected by a cryptosystem, and
the encrypted data is collected and processed by a third-
party IaaS, while the public key and private key services
are provided by the third-party authority (TPA). Usually,
the third-party entities are assumed to be honest-but-curious,
and a TPA is typically fully trusted.

To address the trust and compliance issues on these
service providers, especially, the security-related service
providers such as certificate authorities (CAs), key directo-
ries (KDs) and TPAs that provide services of certification,
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Fig. 1. Illustration of privacy-preserving third-party service enabled sys-
tem.

public key lookup and private key generation in exist-
ing cryptographic key infrastructures, various transparency
approaches that provision openness and accountability have
been recently proposed [5], [6], [7], [8], [9], [10] to increase
users’ trust or confidence in such cryptographic key infras-
tructures. For instance, the CAs, as the underlying public
key infrastructure for SSL/TLS protocol, are responsible for
issuing digital certificates that certify the ownership of a
public key by the named principal of the certificate and
allows others to rely upon signatures made by the private
key corresponding to the certified public key.

Recent research have demonstrated that a variety of
attacks [11], [12] and mis-issuance problems [13], [14] might
cause complications during certificate issuance procedures.
For instance, Kumar et al. [13] analyze CAs’ certificate mis-
issuance incidents using a certificate linter named ZLint
and Scheitle et al. [14] focus on issues with certification
authority authorization (CAA) DNS records. To further
mitigate the threat of attack and mis-issuance, notions of
certificate transparency [5], [6], CertChain [15], verifiable key
directory [7], [9], [10], transparency overlay [8] and authority
transparency [16] have been proposed. To be more precise,
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certificate transparency frameworks such as those presented
in [5], [6] are intended to increase the transparency of users’
certificates, whereas the CONIKS [7], [9] and SEEMless [10]
are intended to be used with general key directories in end-
to-end encryption systems. Unlike the above-mentioned
conventional transparency frameworks, which focus on the
static binding of a public key and an identity, emerging
authority transparency [16] focuses on the dynamic key
generation interactions in TPA that is requisite by modern
cryptosystems such as attribute-based encryption (ABE)
[17], [18], functional encryption (FE) [19], [20], and multi-
key homomorphic encryption (HE) [21], [22].

However, the initial and formal design of authority
transparency has considerable limitations that hinder its de-
ployment and application in several areas, such as emerging
third-party service enabled privacy-preserving applications
[1], [2], [3], [4], [23]. Specifically, these limitations include:
(i) the definitions and protocols designed in authority trans-
parency model only work on, and relies on, the ABE cryp-
tosystems; and (ii) the implementation of authority trans-
parency framework is based on a secure logging system.
In short, existing authority transparency proposal does not
directly support other emerging cryptosystems such as the
FE and multi-key HE families that have been used to build
secure computation protocols [2], [3], [4], [24].

Besides the identity-to-public-key-binding stealthy targeted
attack and the private-key-service censorship attack as illus-
trated in [16], FE or multi-key HE based applications have
additional privacy threats; for instance, there is a potential
inference attack by manipulating a malicious functionality-
related vector, as illustrated in [2], [3]. Furthermore, the
deployment of secure logging system based authority trans-
parency solution pose a challenge with regards to being
broadly accepted by the Internet community because: (i) it
requires several commercial companies or non-profit orga-
nizations that have the computation and storage capabilities
to deploy a publicly auditable secure logging system such
as that used in the certificate transparency community (e.g.,
secure logging systems deployed by Google and Mozilla);
(ii) there is also a lack of a concrete mechanism for the
entities to participate in a transparency framework and
monitor and audit unintentional or malicious behaviors.

To address the aforementioned limitations, in this
paper, we propose an approach that provides trans-
parency and trustworthiness of third-party authority and
IaaS using blockchain techniques - in short, TAB - for
emerging third-party service-enabled crypto-based privacy-
preserving applications. For simplicity, we use FE-based
privacy-preserving systems proposed in [2], [3], [4] as the
underlying application to illustrate the TAB approach. In
particular, to achieve the transparency and trustworthiness
goal, TAB employs the Ethereum blockchain as the un-
derlying public ledger infrastructure, and also includes a
novel and well designed Ethereum smart contract to sup-
port automatic accountability with an additional incentive
mechanism to motivate participants to participate in the
auditing process and punish unintentional misbehaviors or
malicious behaviors. We summarize our key contributions
as follows:

We first revisit the notion of authority transparency model
and propose our formal TAB model with new definitions

and protocols to address the entity trust issues considering
the scenarios of generic crypto-based privacy-preserving
applications where the cryptographic infrastructure TPA or
centralized key server is commonly assumed to be fully
trusted and the application entities (e.g., third-party IaaS and
data sources as illustrated in Fig. 1) is usually assumed to
be honest-but-curious.

Next, we design a novel smart contract to achieve auto-
matic accountability based on our design of the TAB model
and employ the Ethereum blockchain as the underlying
public ledger infrastructure.

We also design an incentive mechanism in the smart
contract to (i) reward a TPA if it fulfills its obligation;
(ii) punish any entity that violates its responsibility, and
(iii) encourage other entities to help audit and inspect the
potential malicious behaviors caused by the assumed fully
trusted TPA and assumed honest participants.

We finally analyze the security guarantee of TAB and
present the experimental evaluation on the smart con-
tract implemented in the Ethereum official test network -
Rinkeby. The evaluation result shows that TAB is efficient
and provides security and privacy guarantees.

2 BACKGROUND AND PRELIMINARIES

Here, we briefly present preliminaries and background
of related concepts such as functional encryption and
its related applications, authority transparency, blockchain,
Ethereum, and smart contract.

2.1 TPA-based Cryptosystems and Applications
Emerging modern cryptographic schemes, especially those
that rely on a third-party authority (TPA) to provide key ser-
vices, are being adopted in privacy-preserving applications,
where data is encrypted and the data management opera-
tions such as querying, accessing control, and computation
are over the encrypted data. A TPA is a critical component
in these cryptosystems, and it is generally assumed to be
fully trusted. Such an assumption is very common in cryp-
tography research community. However, deploying such a
trusted TPA component in a real scenario is still a challenge
because there is a lack of (i) incentive mechanisms to encour-
age a participant (i.e., a third-party entity) to play the role
of the authority and (ii) a transparent mechanism to ensure
that such a TPA works as expected when considering the
attacks such as identity-to-public-key-binding stealthy targeted
attack and private-key-service censorship attack as illustrated in
[16].

Beyond authority transparency that addresses the trust
issues in a TPA caused by the aforementioned attacks, we
address incentive issues related to participants’ engage-
ment in a transparency framework via Ethereum blockchain
techniques, and tackle additional privacy leakage issue
caused by assuming that participants are hones-but-curious
in crypto-based privacy-preserving applications [2], [3]. Our
proposed blockchain-based TAB framework can support
various TPA-based cryptosystems such as ABE-enabled ap-
plications as illustrated in [16] and the emerging FE-enabled
privacy-preserving applications. Here, we briefly introduce
the FE cryptosystem and FE-based applications; we also dif-
ferentiate between the ABE and FE structures/components.
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2.1.1 Functional Encryption (FE)
FE is a generalization of public-key encryption in which
any party with an issued functional secret key allows us
to compute a function of what a ciphertext is encrypting.
A FE scheme for functionality F is a tuple EFE = (Setup,
KeyDerive, Encrypt, Decrypt) of four algorithms [19], [20],
where the Setup and KeyDerive algorithms are run by a
TPA that is assumed to be fully trusted. A data owner can
adopt the Encrypt algorithm to protect its data, while a data
user with the functional decryption key issued by its TPA
can compute the function over the ciphertext to acquire the
function result without learning the original data via Decrypt
algorithm.

2.1.2 FE-based Application and Potential Privacy Leakage
The feature of computing over encrypted data makes func-
tional encryption a promising approach for employing se-
cure multi-party protocols for privacy-preserving machine
learning (PPML) [2], [3]. While employing FE, a PPML also
inherits the assumption of a trusted TPA. Besides, PPML
techniques typically assume that the aggregator or coordi-
nator (that is, the decryption party when PPML uses a FE
scheme) is honest-but-curious.

Security guarantee provided by a FE scheme can ensure
that the encrypted data cannot be compromised by an ad-
versary [20]. However, there is still potential privacy leakage
in PPML approaches that use FE schemes, as demonstrated
in [2], [3]; here, an authorized honest-but-curious decryption
party may exploit a manipulated vector to request a func-
tional decryption key to repeatedly execute the decryption
algorithm over the encrypted data and store the intermedi-
ate data to infer partial information in the encrypted data.
For the specific inference attack, we refer the readers to [2],
[3] for more details.

2.1.3 Comparing ABE and FE
ABE is also a type of public-key encryption in which cipher-
texts are dependent upon access policy over a set of attribute
credentials (e.g., age, affiliation, etc.) and any party with
proper attribute credentials can be issued a secret key to
access the encrypted data. A (ciphertext-policy) attribute-based
encryption (ABE) scheme for access policy A is a tuple EABE
= (Setup, KeyGeneration, Encrypt, Decrypt) of four algorithms
[25], [26]. As in ABE, the Setup and KeyGeneration algorithms
are run by a TPA that is assumed to be fully trusted. A data
owner uses the Encrypt algorithm with a specified access
policy to protect her data, while the data user with proper
attribute credentials that satisfy the access policy can access
(Decrypt) the encrypted data.

The main difference between ABE and FE is the creden-
tials that are used to generate or derive the private key. In
ABE, the private key is generated based on a set of attributes
of a data user, while the functional decryption key is derived
from a function-related vector in FE for the functionality
of inner-product scheme. Besides, the adoption of FE may
introduce potential inference threats as illustrated in [3].
Remark. Unlike authority transparency [16] that builds on the
ABE scheme, for simplicity, in this paper, we use the recently
proposed FE-based applications [2], [3], [4] as underlying
examples to illustrate the key features of TAB. Specifically,

TAB focuses on providing transparency in cases related to
above-discussed assumptions, namely, a trusted TPA and a
honest-but-curious participants, to increase users’ trust in a
system. In Section 3.4, we analyze the applicability of TAB
in other TPA-based cryptosystems.

2.2 Authority Transparency
Authority transparency is defined as a publicly auditable set
of a TPA’s activities. The goal is to ensure that a TPA fulfills
its auditing obligations (O) related to public parameter
distribution (Opp) and trustworthy key service (Oks), con-
tinuously and transparently. We formally define authority
transparency as below; here, we adopt the notation from
[27].

Definition 2.1 (Authority Transparency [16]). Let T ,L and
C denote a third-party authority, a log server, and a client,
respectively, that use a set of interactive protocols. Let
C.actor, C.auditor and C.monitor represent the roles of the
actor, auditor, and monitor that execute the application,
auditing, and monitoring modules, respectively. We define
authority transparency, AT T ,L,CO , as a set of six interactive
protocols:

AT T ,L,CO = (GenO,LogOpp
,LogOks

,CheckO, Inspect,Gossip),

and each protocol is defined as follows:

(SOpp , SOks
)← Run(1λ,GenO,{T , C.actor} , (ε, ε)) (1)

(bT , ε)← Run(1λ,LogOpp
,{T ,L} , (SOpp , ε)) (2)

(bT , bC , ε)← Run(1λ,LogOks
,{T , C.actor,L} , (ε,Oks.SC ,Oks.ST ))

(3)

(ε, bC.auditor)← Run(1λ,CheckO,{L, C.auditor} , (ε, ε)) (4)

(bL, ε)← Run(1λ, Inspect,{L, C.monitor} , (ε, ε)) (5)

(evidence)← Run(1λ,Gossip,{C.auditor, C.monitor} , (ε, ε)) (6)

The order of parameters in the input tuple and the
order of elements in the output are consistent with par-
ticipating entities. For instance, in protocol (bT , ε) ←
Run(1λ,LogOpp

,{T ,L} , (SOpp , ε)), there exists two partici-
pants: T has the inputOpp while L has no input, as denoted
by ε.

We briefly introduce each interactive protocol as follows:

(1) GenO is a protocol between T and C.actor that gen-
erates the audit obligations to be logged;

(2) LogOpp
is a protocol between T and L that is used to

record Opp in the public log;
(3) LogOks

is a protocol involving T , L and C.actor that
is used to record Oks in the public log;

(4) CheckO is a protocol involving L, C.actor and
C.auditor that is used to check whether or not an
audit obligation Opp or Oksis in the log;

(5) Inspect is a protocol between L and C.monitor that is
used to allow the monitor to inspect the contents of
the log and find suspicious audit obligations {Oi};

(6) Gossip is a protocol between C.auditor and C.monitor
that is used to compare different versions of a log and
detect any inconsistencies caused by misbehavior of
a participant or on behalf of the log server.

Unlike the authority transparency approach proposed
in [16] that is built on the secure logging system, our
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proposed TAB relies on the Ethereum blockchain. Thus, the
above-mentioned protocols are not directly applicable in
our blockchain-based TAB framework. We will present our
relevant definitions in Section 3.3.

2.3 Blockchain, Ethereum and Smart Contract

A blockchain is a growing list of records (a.k.a, blocks) that
are linked via cryptographic techniques, where each block
contains a cryptographic hash of the previous block, a times-
tamp, and the transaction data. In particular, the blockchain
is a public distributed database of records, transactions, or
digital events that have been executed and shared among
various participants. In our proposed work we, employ a
blockchain as the underlying public ledger infrastructure
instead of the secure logging system adopted in [16].

Ethereum is an open-source and public blockchain-based
distributed computing platform supporting smart contracts
[28]. Usually, there are two types of accounts in Ethereum,
namely External Owned Accounts (EOAs) controlled by
private keys associated with users and Contract Accounts
assigned to smart contracts. A smart contract in Ethereum
refers to a piece of code, for instance, a Solidity1 program
code that usually consists of multiple functions, few pa-
rameters and perhaps some modifiers. To deploy a smart
contract, an ordinary user can compile the contract to gen-
erate the corresponding bytecodes and application binary
interface (ABI), and then send a contract creation transaction
to the Ethereum network with the bytecodes and ABI. Upon
receiving a transaction, the miners of the Ethereum network
will include the bytecodes into the newly coming block
being added. Each successfully deployed contract account
can be viewed as a small decentralized computation and
storage unit that can execute specific functions defined in
the contract and also store data allowed by the contract. As
a result, the transactions, messages, as well as the inputs of
the functions are all recorded by the Ethereum blockchain,
and, hence, the outputs of the functions are deterministic
because the distributed miners can ensure that. Note that
it is not free to either deploy a smart contract or to call
a function of existing smart contracts in Ethereum. A user
needs to pay Gas2 that can be exchanged with Ether, the
cryptocurrency used in Ethereum.

3 TAB FRAMEWORK

3.1 Overview of TAB

3.1.1 Entities in TAB
Fig. 2 illustrates the architecture of TAB framework. Note
that the dashed lines represent the procedures of crypto-
based privacy-preserving applications, while the solid lines
denote the procedures of the TAB framework. TAB consists
of the following entities:
TPA. The TPA is the same role as in the ordinary FE
cryptosystem, but in TAB it has additional responsibilities
to fulfill, including: (a) submitting the public parameters
obligations (in particular, identity-to-public-key bindings),
(b) reporting its fulfillment of obligations in the key service

1. https://github.com/ethereum/solidity
2. https://github.com/ethereum/wiki/wiki/Whisper

process, and (c) verifying that the submitted/reported obli-
gations are permanently recorded in the blockchain.
Actors. Actors include all users of an crypto-based privacy-
preserving application, namely, the entities (e.g., data owner)
that employ the encryption algorithm and the entities (e.g.,
data user) that perform secure computation or access control
via the decryption algorithm. Besides, the actors may also
need to fulfill the obligations of key service because they are
involved in interaction with other actors and/or the TPA.
Monitors. Monitors are responsible for inspecting the con-
tents of the recorded auditing obligations to find suspicious
obligations. In TAB, the encryption entities or the additional
independent entities play the role of the monitors.
Administrator. An administrator is responsible for the de-
ployment, maintenance, and administration of the smart
contract. The smart contract mainly includes three modules:
(a) the obligation record module that provides various inter-
action functions for the entities to carry out recording, audit-
ing and inspection requirements related to the obligations,
(b) the incentive mechanism that provides the payment and
reward functions to the participants, and (c) the inference
prevention module (IPM), previously deployed in a TPA as
illustrated in [3]. Note that the Ethereum blockchain can
ensure the trustworthiness of smart contracts; it can also en-
sure that the recorded obligations are distributed, open, and
tamper-proof. Note that once the smart contract deployed it
does not need a centralized administration.

3.1.2 Notations and Use Scenarios
To elaborate our TAB, we first present the notations, entities,
and scenarios of applying our TAB framework in a crypto-
based privacy-preserving environment. Here we use FE as
the underlying crypto scheme to present TAB framework.
In Section 3.4, we analyze the applicability of TAB in other
TPA-based cryptosystems. Suppose that we have a group
of data owners {Cowner

i }i∈[n] that will share their private
data xxx = {xi}i∈[n] encrypted by an FE scheme where for
simplicity we assume that Cowner

i owns data xi , a group of
data users {Cuser

j }j∈[m], where each data user has a vector yyyj
and needs to acquire the inner-product 〈xxx,yyyj〉 over the ci-
phertext of xxx, and a TPA A that provides public and private
key services for these data owners and users. Furthermore,
let {Cowner

k }k∈[l] be the monitors. We use B to represent the
Ethereum blockchain, and let BTAB

SC denotes our proposed
smart contract deployed in the blockchain.

3.2 Threat Model

Threat Model of Privacy-Enhanced Applications: Existing
crypto-based privacy-preserving applications are usually
based on some common assumptions: (i) a centralized TPA
or key server is assumed to be fully trusted and (ii) both
decryption and encryption entities are assumed to be honest-
but-curious. Hence, the threat models in such cases typically
focus on an adversary who attempts to compromise the
encrypted data and acurious entity that launches potential
privacy attacks (e.g., infer the private information), while
honestly following the protocols/algorithms.
Threat Model of TAB: As illustrated by the identity-to-
public-key-binding stealthy targeted attack and the private-key-
service censorship attack in [16], a TPA or key server may not
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Fig. 2. Overview of the TAB framework. Note that the dashed lines represent the procedures of the crypto-based privacy-preserving applications,
while the solid lines denote the procedures of TAB framework.

be trusted because of its unintentional misbehaviors and/or
malicious behaviors. Similarly, the honest-but-curious entities
may also behave dishonestly. In addition to addressing
above threats, TAB focuses on increasing entities’ trust on
the TPAs and other honest-but-curious entities through trans-
parency approach. In particular, TAB mitigates the depen-
dence of crypto-based privacy-preserving applications on
the assumptions of a trusted TPA or key server and an honest
entities.

To be more precise, we assume that such a dishonest
adversary may pretend to behave honestly without being
detected by other entities. Adversaries may not follow the
specifications in the protocols, and/or attempt to conceal
their activities. In general, the dishonest adversary includes
the TPA and actors, where a dishonest TPA may attempt
to forge a key service proof-of-work without actually pro-
viding a valid key service; and, a dishonest actor may try
to incorrectly blame other entities for misbehavior. Note
that misbehavior may be related to non-malicious misuse
by normal actors or the behavior of compromised actors
controlled by an attacker.

We note that the case of potential collusion between a
dishonest TPA and honest-but-curious actors is not fully con-
sidered in this paper. Rather than forbidding or preventing
collusion through technical means, such collusion between
two stakeholders (i.e., TPA and actors) can be solved by
resorting to game theory and incentive mechanism designed
in the smart contracts [29]. TAB also involves the incentive
mechanism from the aspects of each entity, and hence it can
prevent such collusion in a game theory manner. We will
not discuss that in the reset of the paper, and readers can
refer to [29] for more details.

Furthermore, unlike the secure logging system based
authority transparency framework in [16], where the logger
is treated as a potential dishonest adversary, in TAB, the
Ethereum smart contract is adopted as the public ledger
infrastructure that has been proved to be a trusted compu-
tation platform.

3.3 Proposed TAB Framework

3.3.1 TAB Model
Unlike the authority transparency approach in [16] that
builds on the secure logging system for ABE cryptosystem,
TAB uses the Ethereum blockchain, and to keep consistency,

we adopt the similar concepts/notions of the authority
transparency but it considers generic crypto-based privacy-
preserving scenarios including emerging FE-based applica-
tions and a blockchain-based public ledger infrastructure.

Suppose that each entity e in TAB is issued or self-
generates an identity-based public and private key pair
〈pke, ske〉. Note that the key service interaction occurs
between entity Cactor and authority A, where each entity
has already received its public and private key pair. For
instance, let 〈pkactor, skactor〉 and 〈pkTPA, skTPA〉 represent the
public/private key pairs of the actor and the TPA, respec-
tively. Here, we first present the notion of public parameter
audit obligation and key service audit obligation, and then
present the formal definition of TAB.

Definition 3.1 (Public Parameter Audit Obligation (PPAO)).
A PPAO Opp of e is a map structure as follows:

Oepp := H(eid) : 〈eid,pke, Sigske
(eid,pke)〉,

where eid represents the descriptive identifier of e, H(·) is a
hash function, pke denotes the public key binding of entity
e, and Sigske

is the signature using ske.

Definition 3.2 (Key Service Audit Obligation (KSAO)). A
KSAO OC

actor,A
ks is a map structure consisting of a pair of key

service snapshots

OC
actor,A
ks := H(Cactor

id ,Aid, r) : 〈Sreq,Sresp〉,

where each snapshot is a 4-tuple as follows:

Sreq := H(Cactor
id ,Aid, r) : 〈r, f, tCactor , Sigskactor

(r, f, tCactor)〉,
Sresp := H(Cactor

id ,Aid, r) : 〈r, σ, tA, SigskTPA
(r, σ, tA)〉,

such that

Sreq.H(Cactor
id ,Aid, r) = Sresp.H(Cactor

id ,Aid, r)
Sresp.tA − Sreq.tCactor > 0

Sreq.tA − Sresp.tCactor < δt

where r is a nonce selected by the key service requester, t
is the timestamp of key service processed by each entity, f
denotes the request content such as function related vector,
σ represents the proof-of-work that TPA has issued the key,
δt is the threshold of timestamp difference indicating the
expected time of processing of the key service request by
the TPA.
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Remark. In particular,Opp is an identity-to-public-key binding
with the issuer’s signature, while OC

actor,A
ks is the proof-of-key-

service. In the OC
actor,A
ks , for simplicity, to provide the proof-

of-work of issuing the functional decryption key skf for the
function related materials f , let Sigma be H(skf ).

Based on the notion of public parameter audit obligation
and key service audit obligation, we present the formal TAB
model as follows:

Definition 3.3 (TAB Model). Let A,B and C denote a third-
party Authority, a Blockchain, and an Actor, respectively,
which are parties involved in the interactive protocols. Let
C.actor and C.monitor represent the roles of the actor
and monitor that execute the functional and monitoring
modules, respectively. We define TAB model, M, as a set
of five interactive protocols:

MA,B,CO = (GenO,LogOpp
,LogOks

, Inspect),

and each protocol is defined as follows:

(SOpp , SOks
)← Run(1λ,GenO, {A, C.actor})

(bA, ε)← Run(1λ,LogOpp
, {A,B}, (SOpp , ε))

(bA, bC , ε)← Run(1λ,LogOks
, {A, C.actor,B}, (Oks.SA,Oks.SC , ε))

(bB, ε)← Run(1λ, Inspect, {B, C.monitor}, (ε, ε))

Theorem 3.1 presents similar security guarantee as used
in [16]. We present the details in Section 4.1.

Theorem 3.1. If the hash function is collision-resistant and
the signature scheme is unforgeable, then TAB model com-
prises a secure transparency framework.

Remark. Note that the formal definition of our TAB model
is inherited from the authority transparency model [16]
with needed changes considering the underlying Ethereum
blockchain infrastructure. Specifically, in the authority trans-
parency model, the gossip protocol essentially ensures the
consistency of distributed logs without being tampered by
an adversary, while the check protocol guarantees that the
submitted obligations are recorded by the logging system.
As TAB adopts the Ethereum blockchain as the underlying
public ledger infrastructure, there is no need to run the
gossip and check protocols because these logging-related
functions are the features provided by the Ethereum smart
contract.

3.3.2 Design of BTAB
SC

The TAB smart contract is a critical component in our
framework. To support the goal of TAB framework, BTAB

SC
includes various types of modules: administrative module,
access control module, obligation module, inspection module, and
incentive module. As illustrated in Fig. 3, the access control
module verifies a user’s role within an application and
determines whether or not to execute corresponding mod-
ules or functions. The administrative module keeps track of
the TAB smart contract’s status and registration procedures.
The obligation module is concerned with the collection of
various obligation records and the prevention of inference
in privacy-preserving applications. The inspection module
enables authorized users to examine misbehavior or mali-
cious activity. The incentive module coordinates the above
modules in order to reward or punish users using the

Fig. 3. Overview of the TAB Smart Contract Interface.

Ethereum network’s payment functionalities. We discuss
each module in details next.
Administrative module. This module allows the adminis-
trator role to deploy the smart contract into the Ethereum
network. The module also includes functions such as open-
ing and locking the enrollment, and allowing the partici-
pants to drop out.
Access control module. This module supports a basic role
based access control (RBAC) mechanism that allows the
account (a.k.a, the participating entities) have role-related
permissions to call various functions. In BTAB

SC , we define
four types of roles: the TPA, the actors of data owner, the actors
of data user, the monitors and the administrator (i.e., the smart
contract owner). The administrative entity that deploys
the smart contract becomes the smart contract owner. The
ownership can be transferred to a new account if necessary.
Besides, it is also possible to relinquish this administrative
privilege, which is a common pattern after an initial stage
when there is a need for a decentralized administration.
After the deployment, each entity needs to register to its
role by calling the corresponding function before it can use
the ordinary features of the smart contract.
Obligation module. This module assists in recording the
audit obligation into the public ledger. It also publishes its
identity-to-public-key binding to the Ethereum blockchain,
as illustrated above. Note that the identity of the entity
is the unique public address (i.e., 42 hex string characters
without case-sensitivity) of the blockchain account, which is
derived from the entity’s private key. With regards to the key
service audit obligation procedure, the key service requestor
(i.e., data owner) can call the corresponding function (that
includes role verification) with a randomly generated re-
quest identifier, the key-related request parameters, and the
corresponding signature. The function then automatically
analyzes the request parameters via the inference prevention
module (IPM). Note that the IPM, previously deployed inside
the centralized trusted TPA in vanilla FE-based applications,
is now deployed in the smart contracts in a decentralized
trust setting in the TAB. Upon receiving the key service
request with the request identifier, the TPA first checks
the verification result of IPM. If the request passes the
verification, the TPA will issue the functional decryption
key and then publish a response snapshot to fulfill the key
service obligation.
Inspection module. This module mainly inspects the com-
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pleteness of a pair of the key service snapshots to check
whether the TPA has fulfilled its key service obligation
or not. Besides, it also allows checking for the published
identity-to-public-key binding. Besides the inspection module
that can prevent potential misbehaviors, we have intro-
duced the RBAC mechanism to prevent partial misbehav-
iors and malicious behaviors as each entity only will be
allowed to call corresponding functions with limited privi-
lege.
Incentive module. This module, as part of BTAB

SC , includes
several functions to enforce the incentive mechanism, as
depicted in Fig. 3. The incentive mechanism is based on
payment features of the Ethereum network, where the to-
ken can be exchanged for real currency. As illustrated in
Fig. 3, we design several functions as ”publicly payable”,
which indicates that the smart contract is able to receive
the transaction value (e.g., the Ether) when the function is
successfully called and executed.

In general, m data users need to pay equally for the cost
of calling the registration function for themselves as well as
for n data owners and the TPA. Each data user also needs
to pay for the cost of calling the request obligation record
function and that of calling the response obligation record
function by the TPA. Additionally, there exists a mechanism
to punish the misbehaviors and malicious activities by a
dishonest TPA and data users. To achieve that, the data
owners and the TPA first need to register and pay the cost
by themselves. The data users make a deposit equally for
all the entities’ registration cost after the enrollment phase.
Then, the data owners and the TPA can call the disposable
reward function to withdraw the registration cost. Besides,
we make the TPA and data users make a guaranteed deposit
after the registration phase. The monitors can register and
pay the cost by themselves, and then calls the inspection
function to check the suspicious behaviors. If monitors
find the malicious behaviors, they will acquire the reward
from a fine to the corresponding entity (i.e., the guaranteed
deposit of the entity). Without the guaranteed deposit, the
corresponding entity is not allowed to operate in/join the
system. We discuss the quantitative analysis of the cost of
each entity in BTAB

SC in Section 4.2.

3.3.3 TAB Procedures
As depicted in Fig. 4, we illustrate the four phases of the
TAB framework with specific procedures in a typical FE-
based privacy-preserving application scenario. Note that
the dashed arrows represent the functional procedures of a
typical FE-based application, while the solid arrows denote
procedures specific to TAB. In our design, each entity in the
FE-based application can also play the role of the auditor
and monitor, and we also allow additional monitors to help
inspect the misbehaviors and malicious behaviors. Below,
we present the specific procedures of each phase in TAB.
Phase I: entity initialization: For each entity e with role erole
and identifier eid in the framework, it generates a public
and private key pair 〈pke, ske〉. Then, entity e registers its
role erole to BTAB

SC , and publishes its id-to-public-key binding
〈eid,pke〉 with its signature Sigske

(eid,pke) to BTAB
SC .

Phase II: FE (crypto) initialization. The TPA A sets up the
FE cryptosystem with the master public key and master
private key pair 〈mpkFE,mskFE〉. Using the master key, the

TPA generates and sends the common public key pkFE
com

for all entities (i.e., data owners and data users) in the
FE-based application. Then, the TPA publishes the binding
〈Aid,pkFE

com〉 with its signature SigskA
(Aid,pkFE

com) to BTAB
SC .

Phase III: secure data publishing. For each data owner Cowner
i ,

it first selects a nonce r as the key service identifier. Then
Cowner
i requests the entity-specific public key pkFE

Cowner
i

from
the TPA with r. Meanwhile, Cowner

i also sends a request key
service snapshot SC

owner
i

req to BTAB
SC as follows:

SC
owner
i

req = 〈r, 0, tCowner
i

, SigskCowner
i

(r, 0, tCowner
i

)〉.

Then, the TPA generates pkFE
Cowner
i

for Cowner
i using its master

keys, and also publishes a corresponding response key
service snapshot SAresp to BTAB

SC to fulfill its key service audit
obligation OC

owner
i ,A
ks with mapping key H(Cowner

i,id ,Aid, r) as
follows:

SAresp = 〈r,H(pkFE
Cowner
i

), tA, SigskA
(r,H(pkFE

Cowner
i

), tA)〉.

Each data owner then uses pkFE
eowner
i

to encrypt its data as
follows: {EncpkFE

eowner
i

(xi)}i∈[n]. Finally, the data owner pub-

lishes a receipt for the received pkFE
eowner
i

.
Phase IV: secure data computation. Suppose that a data user
Cuser
j who has a vector yyyj = (y1, ..., yn)j would ap-

ply inner-product functionality over the encrypted data
{Enc(x1), ...,Enc(xn)}. Cuser

j also selects a key service iden-
tifier r′ first, and then requests the functional decryption
key skFE

yyyj to the TPA with the vector yyyj and r′. At the same

time, Cuser
j also sends the request key service snapshot SC

user
j

req

to BTAB
SC as follows:

SC
user
j

req = 〈r′, yyyj , tCuser
j
, SigskCuser

j

(r′, yyyj , tCuser
j

)〉.

Unlike the approaches proposed in [2], [3] that deploy the
inference prevention module (IPM) within a TPA, we propose
to deploy IPM in a smart contract as the TPA is not fully
trusted in TAB. Thus, the TPA needs to query BTAB

SC to check
the validity of yyyi. If yyyi is valid, the TPA generates skFE

yyyj for
Cuser
j using its master keys, and then publishes a correspond-

ing response key service snapshot SAresp to BTAB
SC to fulfill

its key service audit obligation OC
user
j ,A
ks with mapping key

H(Cuser
j ,A, r′) as follows:

SAresp = 〈r′,H(skFE
yyyj ), tA, SigskA

(r′,H(skFE
yyyj ), tA)〉.

Otherwise, the TPA refuses the key service and also pub-
lishes key service snapshot indicating that it has refused the
key service, SA,refuse

resp , with refusing symbol ⊥ to BTAB
SC to

fulfill its key service audit obligation as follows:

SA,refuse
resp = 〈r′,H(⊥, yyyj), tA, SigskA

(r′,H(skFE
yyyj ), tA)〉.

With the received skFE
yyy , a data user can compute the inner-

product of 〈xxx,yyy〉 by decryting as follows:

〈xxx,yyyj〉 = DecskFE
yyyj
({EncpkFE

Cowner
i

(xi)}i∈[n]).

Finally, the data owner publishes a receipt for the received
skFE
yyy .
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Fig. 4. Illustration of the four phases with specific procedures in TAB in a FE-based privacy-preserving application scenario.

Remark. To avoid redundant description, we do not present
the roles of auditor and monitor in the above-mentioned pro-
cedures. In particular, as illustrated in Fig. 4, the data users,
data owners and the TPA also play the role of auditor that
checks whether the audit obligations are recorded into the
blochchain permanently. In our design, the data owners also
play the role of a monitor to check the suspicious obligations
caused by misbehaviors and malicious behaviors from the
TPA and adversarial data users. For instance, as illustrated
in [2], [3], an adversarial data user may infer the private
vector xxx by manipulating a vector to request the functional
decryption key. The monitor can inspectOe

user,eTPA

ks to find the
adversary’s suspicious behaviors. Furthermore, our design
can also address the case of intentionally issuing an incorrect
functional decryption key. For example, suppose the key
request material (i.e., xxx) from the authorized user is correct
after IPM checking, while the key is incorrect. In TAB, the
data user is also the monitor/auditor and can file a claim
by manually calling the inspect function based on existing
logged key service materials, where the inspection is based
on the rule defined in the formal model presented above.

3.4 Applicability of TAB

TAB is applicable to other popular TPA-based cryptosystems
as well. Specifically, we analyze the applicability of TAB
in the attribute-based encryption (ABE) scheme that is the
focus of authority transparency proposed in [16].

Differences in key service audit obligations in FE and
ABE schemes are as shown in TABLE 1. The main differ-
ence in the key service is the credential type, namely, the
function-related vector and the attributes that are usually
represented in a character string. These credentials are used
to generate or derive the private key in the Setup and
KeyGeneration phases. As presented in Section 3.3, TAB is a
general framework and is not restricted to the type of audit
obligation that builds on different key service credentials.
Specifically, the request content f and response proof-of-

TABLE 1
Different key service audit obligations in FE and ABE

Types obligations in FE obligations in ABE

Setup-Output private key public parameter
KeyGen-Input function-related vector attribute set
KeyGen-Output functional decryption key attribute private key

work σ in Definition 3.2 are not limited to a function-
related vector and corresponding hashed generated key as
illustrated in Section 3.3.3. TAB is applicable to ABE-based
applications by replacing the following audit obligations:

SC
user
j

req = 〈r′, yyyj , tCuser
j
, SigskCuser

j

(r′, yyyj , tCuser
j

)〉,

SAresp = 〈r′,H(skFE
yyyj ), tA, SigskA

(r′,H(skFE
yyyj ), tA)〉,

by the corresponding audit obligations:

SC
user
j

req = 〈r′,SSSj , tCuser
j
, SigskCuser

j

(r′,SSSj , tCuser
j

)〉,

SAresp = 〈r′,H(skABE
SSSj

), tA, SigskA
(r′,H(skFE

SSSj
), tA)〉,

whereSSSj is the attribute set and H(skABE
SSSj

) is the correspond-
ing access control private key generated by the TPA using
the attribute set SSSj in the hash format.

4 EVALUATION

4.1 Security, Privacy and Trustworthiness
4.1.1 Security Guarantee
The security for the transparency framework is defined
in terms of three properties [8], [16]: (i) log-consistency - a
dishonest public ledger cannot remain undetected if it tries
to present inconsistent versions of the recorded obligations;
(ii) unforgeable-service - a dishonest TPA cannot forge a key
service by sending valid key service snapshots, but not
provide the key service to the actors; (iii) non-fabrication - a
dishonest TPA or actors cannot blame the public ledger for
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misbehavior if it has behaved honestly, and dishonest actors
cannot prove the TPA for misbehavior if it has behaved
honestly.

We note that log-consistency relies on the security prop-
erties of the Ethereum blockchain. The unforgeable-service
and non-fabrication properties depend on the designed smart
contract functions and the adopted signature scheme. Here,
we use the game simulation-based reduction methodology
to prove Theorem 3.1.

Proof. TAB is built on three fundamental security compo-
nents: the Ethereum blockchain as the public ledger in-
frastructure, the Secure Hash Algorithm 3 (SHA3) as the
collision-resistance hash function, the Elliptic Curve Digital
Signature Algorithm (ECDSA) to sign and validate the
origin and integrity of messages. The security of three
components has been proved in corresponding related work
[28], [30], [31]. We only prove the above-mentioned three
security properties.
Log-consistency. Unlike the existing transparency frame-
work, [8], [16], that relies on the customized public ledger,
TAB uses the public blockchain that has already been proved
to provide secure consistency feature [28], and hence we do
not present it here to avoid redundancy.
Unforgeable-service. In TAB, there are two possible issues
related to forgeable-service:

• a dishonest TPA may publish SAresp to the blockchain,
but does not send the key skf to the actors;

• the dishonest TPA may send an invalid key sk
′

f to
the actors, but publishes correct SAresp generated from
the valid key skf .

For the first issue, the confirmation phase of key service
audit obligation cannot be accomplished in our designed
smart contract, and then such adversarial behavior is easily
detected by the monitors. For the second issue, suppose that
the dishonest TPA has the non-negligible advantage ε to
break the unforgeable-service security guarantee, and hence
it can forge the hashed key component HSHA3(sk

′

f ) for skf
with advantage AdvAHSHA3(sk′

f )→skf
≥ ε.

To achieve that, the dishonest TPA hence needs the
ability to find potential collision HSHA3(skf ) = HSHA3(sk

′

f ).
According to the security promise of SHA3, it is impossible
to find that collision with non-negligible advantage [30].
Thus, dishonest TPA does not have a non-negligible advan-
tage to provide an unforgeable key service without being
detected.
Non-fabrication. In TAB, a possible fabrication case is that dis-
honest actors may attempt to blame the TPA by publishing
SCactor

req to the blockchain but does not actually send the key
request to the TPA. Suppose that a dishonest actor has the
non-negligible advantage ε to break the non-fabrication secu-
rity promise. To launch the fabrication case, the dishonest
actor needs to forge a fake SAresp so that it can accomplish the
confirmation phase. Thus, the dishonest actor is able to forge
a fake signature of the TPA with advantage AdvC

actor

skA
≥ ε.

However, it is impossible to break the ECDSA [31], as has
been proved, namely, the unforgeability of the signature
scheme. Thus, the actors do not have a non-negligible ad-
vantage to frame up the TPA.

4.1.2 Privacy Guarantee
Typically, authorized users request public and private keys
from a TPA using (attribute) identities in privacy-preserving
applications built on cryptosystems like as ABE, FE, and
multi-key HE. The major objective of authority transparency
[16] and TAB is to audit the interactive key service discussed
previously without invading the original key service. As a
result, privacy assurance of TAB focuses on preventing data
leaking from audit materials.

Unlike the initial authority transparency that focuses on
ABE-based applications where partial attribute identities are
privacy-sensitive, TAB also supports the privacy-enhanced
computing applications that built on FE or multi-key HE
schemes. There is no privacy concern regarding the identity
in an FE or multi-key HE because those identities could
be any unique characters without any privacy-sensitive
information. For example, the identity of each entity in TAB
could be the Ethereum network’s public account address,
which is a random 64-character hex string produced from
the entity’s private key. Additionally, the TAB framework
only receives the hash of attribute identifiers in ABE-based
applications, not potentially sensitive attribute information.
As a result, such account identifiers or hash of auditing
materials do not reveal any private identifiable information.

4.1.3 Trustworthiness Goal
The purpose of the TAB approach is to deal with the trust
issues raised by potential dishonest entities by providing
transparency. TAB is able to prevent the attacks such as
stealthy targeted attack and censorship attack as illustrated
in [16]. Specifically, each dishonest entity needs to publish
the key service snapshot to prove that it has fulfilled its
obligation of public parameter distribution and private key
service. The designed smart contract can ensure that each
entity’s submitted audit obligations can be automatically
cross-validated based on our designed protocols before be-
ing honestly and permanently recorded into the blockchain.
Our security analysis has shown that the misbehaviors or
malicious behaviors of a TPA and the actors are easily de-
tected. Furthermore, the IPM is a critical component in FE-
based applications [2], [3] that helps to mitigate the inference
threats. In TAB, the IPM, which was deployed in a TPA in the
scheme proposed in [3], is moved to the smart contract, is
automatically executed in a publicly auditable environment,
and hence increase the transparency and trustworthiness of
IPM.

4.2 Experimental Evaluation
4.2.1 Implementation and Setup
The TAB model does not rely on the specific privacy-
enhanced applications that are built on FE or multi-key HE
cryptosystems, and hence for generality, we only present the
evaluation on a pure TAB model with the simulated audit
obligations where the key-related components are generated
by the FE-based application in an off-line manner.
Implemented Smart Contract: We implement the smart
contracts in Solidity programming language using a Truf-
fle development environment, testing framework and as-
set pipeline for blockchains using the Ethereum Virtual
Machine (EVM). Fig. 3 illustrates the core modules and
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interfaces of TAB smart contract, while the whole implemen-
tation is publicly available on Github 3. We direct the reader
to the Github repository for implementation specifics and
discuss the fundamental implementation considerations be-
low. TAB mainly includes four types of functions as follows:
Access Control Modifiers. The modifier can be used to change
the behavior of functions in a declarative way. In our imple-
mentation, we use the modifier to automatically check the
privilege of each account that is defined in RBAC module
prior to executing the function. We employ Ownable and
AccessControl smart contracts from OpenZeppelin4 as the
basis for our access control mechanism. To be specific, we
define various access control modifiers in which the basic
RBAC functions are integrated to satisfy our access control
requirement. Except for the registration related functions,
other functions are restricted by these modifiers.
Administrative and Incentive Functions. We define several
administrative functions such as ‘enrollLock()’, ‘enrollOpen()’,
‘dropout()’ that allow the administrator to control the enroll-
ment status. In TAB, each entity can register if and only if
the enrollment is set as open by the administrator. After the
enrollment is locked, the deposit operations are opened to
the related entities. Besides, TAB also inherits the adminis-
trative functions such as ‘transferOwnership(newOwner)’, ‘re-
nounceOwnership()’. These two functions allow transferring
the ownership of the contract and leave the contract without
owner, respectively. Furthermore, we also define several
withdraw and deposit functions that help to establish a basis
for the incentive and penalty mechanisms.
Registration Functions. The registration functions mainly fo-
cus on the initialization phases of TAB (i.e., Phases I and II,
as illustrated in Section 3.3.3), where each entity is allowed
to register a role, and publish its identity-to-public-key bind-
ing in the blockchain.
Obligation Functions. The obligation functions address the
core features of the TAB model. As illustrated in Sec-
tion 3.3.3 Phases III and IV, we use a three-phase com-
mitment approach to achieve the obligation features. To
be specific, ‘recordKSPKReq’, and ‘recordKSSKReq’ allow the
actors to publish the key service request snapshots, while
‘recordKSPKResp’, and ‘recordKSSKResp’ allow the TPA to
record corresponding key service response snapshots. Then,
‘recordKSPKResp’ function allows us to confirm the receipt
of the key service.
Inspection Functions. The inspection functions address the
monitoring task for the recorded audit obligation as dis-
cussed in Section 3.3.3. To be specific, ‘inspectObligationKS’
allows to automatically inspect the completeness of the key
service obligations, while ‘inspectObligationPP’ permits the
monitor to verify the published identity-to-public-key bind-
ing. Regarding the incentive design, if a dishonest behavior
is detected, the corresponding entity will be fined a fixed
number of ethers that will be provided as an incentive
reward to the monitor.
Experimental Setup: Our experiments have been performed
on a Macbook Pro platform with 2.3GHz 8-Core Intel Core
i9 processors and 32GB DDR4 memory. Besides, we use the
Ethereum official test network, Rinkeby, as the experimental

3. https://github.com/iRxyzzz/tab
4. https://openzeppelin.com/contracts/

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
training round

0

20

40

60

80

100

120

140

tim
e 

co
st

 (m
in

)

party=6, Without TAB
party=6, with TAB
party=8, Without TAB
party=8, with TAB
party=10, Without TAB
party=10, with TAB

Fig. 5. The time cost of TAB-enhanced privacy-preserving FL

environment to deploy our smart contract. Furthermore,
we write several JavaScript test-cases using the automated
testing framework of Truffle that is built on Mocha5 and
provides a cleanroom environment.

Specifically, for demonstration, we use five Ethereum
accounts to simulate various entities in TAB, namely, the
role of the administrator, the TPA, the data owner, the data
user and the monitor. With regards to various scenarios, we
write corresponding test-cases to evaluate the performance
(i.e., the gas cost and the time cost for scenarios such as
administrative, registration, obligation, etc).

4.2.2 Experimental Results
We report the performance of TAB for selected functions
for various test scenarios in TABLE 2. In particular, the
performance includes two aspects: the gas cost and the test
time. Gas is spent in Ethereum for deploying smart contracts
or calling functions. As reported in TABLE 2, most functions
cost very little. Specifically, except for the smart contract
deployment, the cost of each function is at the level of
105 gas in general. Regarding the most called functions for
obligation and inspection, to record an audit obligation for
one key service, the functions related to three-phase commit-
ment (i.e., recordKSSKReq, recordKSSKResp, recordKSConfirm)
cost 3.7× 105 gas, 8.4× 105 gas, 4.3× 105 gas, respectively.
Besides, the cost of inspection for key service and public
parameter audit obligations is 2.4 × 105 gas and 3.7 × 105

gas, respectively.
Furthermore, we also measure the time it takes to test the

selected functions. Except for the administrative functions,
the calling time of rest of the functions is less than 100ms.
Note that the time to test each function is measured in
the Ethereum test network. The testing time is related to
execution time instead of time taken to confirm the trans-
action . Thus, the deployment time of the smart contract is
only 183ms rather than the general time taken to confirm a
transaction, namely, about 6 minutes.

To further assess the TAB framework’s scalability, we
integrate it into a specific privacy-preserving federated
learning application built on the FE cryptosystem with a
TPA for key service, where the number of enrolled data
owners (i.e., called party in the FL system) increased from
6 to 10 and the task of FL is to train a CNN model over
MNIST dataset. Due to the fact that TAB focuses exclusively
on the key interactions between the user and the TPA, and

5. https://mochajs.org/
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TABLE 2
The gas cost and test time of selected functions in various test case scenarios in the TAB.

Test Cases Functions Gas Cost Time Description

Administrative

deployment 4125603 183ms deploy the smart contract
enrollOpen 44126 42ms open the enrollment
enrollLock 14531 46ms lock the enrollment
dropout 28293 178ms allow to drop out and withdraw the balance

Incentive
depositGuarantee 28083 48ms deposit the guarantee
rewardRegisterCost 52949 43ms reward registration cost for non-payable entity
rewardDeploymentCost 51584 41ms reward deployment for the administrator

Registeration

registerAuthority 38276 80ms register the role of third-party authority
registerActorDataOwner 38335 71ms register the role of data owner
registerActorDataUser 36555 70ms register the role of data user
registerMonitor 36521 72ms register the role of monitor

Obligation
recordKSSKReq 43173 96ms publish the key service request snapshot
recordKSSKResp 84211 55ms publish the key service response snapshot
recordKSConfirm 43402 49ms confirm receipt of the key service obligation

Inspection inspectObligationKS 24511 41ms inspect the key service audit obligation
inspectObligationPP 37482 46ms check the correct of the public parameter

the time cost is negligible in comparison to the time cost
of FL training, the introduction of the TAB framework has
slight effect on the time performance of the original privacy-
preserving FL training, as shown in Fig. 5. Additionally, an
increase in the number of participants has an effect on the
amount of time spent on the supported privacy-preserving
application (i.e., FL training), but not obvious on the amount
of time spent on TAB.

5 RELATED WORK

Privacy Enhanced Applications. Emerging FE schemes
[19], [20] have been shown to be a promising candidate
for secure computation in privacy-preserving application
scenarios where data is encrypted and outsourced, and
the computation is carried out over the encrypted data.
Especially, recently proposed functional encryption for the
functionality of computing the inner-product such as in [20],
[32] raises the possibility of applying functional encryption
in complex applications such as the federated learning and
deep neural networks, as demonstrated in [2], [3], [23], [24],
[33], [34].

Both HE and FE schemes are required to allow privacy-
enhanced computing in crypto-based federated learning
applications. While HE makes use of a centralized crypto
dealer to synchronize key pairs, FE makes use of a third-
party authority (TPA) to assist in the generation of public
parameters and the provision of functional decryption keys
for each function. The crypto dealer or TPA is a vital
component of those applications and is typically regarded
to be fully trustworthy. Furthermore, the entities such as
a coordinator in federated learning are also assumed to
be honest-but-curious. However, the trust issues caused by
malicious insiders in the TPA infrastructure [8], [16] and the
privacy inference issues caused by curious entities [2], [3]
have not been investigated adequately.
Transparency and Blockchain. The concept of transparency
issues have received more and more attention due to ma-
licious activities or misbehavior in various secure com-
puting infrastructures and components. For instance, the
certificate transparency proposed in [5], [6] aims to mitigate
the certificate-based threats caused by fake or forged SSL
certificates that are mistakenly or maliciously issued by

insiders. Most recent and related work such as CONIKS [7]
and its following up work EthIKS [9], SEEMless [10], and
transparency overlay [8] target the key transparency in end-to-
end encrypted communications systems and provide a for-
mal transparency model. The work closest to this proposed
work is the authority transparency framework proposed in
[16] that addresses the issues related to potentially dishonest
TPAs in ABE-based applications using a secure logging
based approach. Further, blockchain based techniques have
also been introduced to help increase the transparency of
existing certificate transparency framework, such as in [15],
[35]. However, there is still a lack of a mechanism to ad-
dress the authority transparency issues for emerging crypto-
based privacy-preserving applications without relying on
the complex secure logging systems. Such a transparency
approach is important to ensure the trustworthy deploy-
ment of generic crypto-enabled systems.

6 CONCLUSION

This paper proposed the TAB framework to address trans-
parency and trustworthiness of third-party authorities (TPAs)
and honest-but-curious entities for generic modern crypto
enabled privacy-preserving applications, as well as other
schemes that have components similar TPAs and many
entities that interact with them. TAB employs the Ethereum
blockchain as the underlying public ledger infrastructure
and also incorporates a novel smart contract to support
accountability with an additional incentive mechanism that
motivates participants to engage in auditing and punish
misbehaviors or malicious behaviors in the environment.
Our evaluation shows that TAB is efficient in the simulated
Ethereum, and achieves the security, privacy and trustwor-
thiness goals.
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