
Trustworthy and Transparent Third Party Authority

RUNHUA XU and JAMES JOSHI, University of Pittsburgh, United States

Recent advances in cryptographic approaches, such as Functional Encryption, Attribute-based Encryption and their variants,

have shown significant promise for enabling public clouds to provide secure computation and storage services for users’

sensitive data. A crucial component of these approaches is a third party authority (TPA) that must be trusted to set up public

parameters, provide private key service, etc. Components of deployed cryptographic mechanisms such as the certificate

authorities (CAs), which are the TPAs of the underlying PKI for the SSL/TLS protocol, have faced several types of attacks (e.g.,

stealthy targeted and censorship attacks), and certificate mis-issuance problems. Such practical challenges indicate that the

successful deployment of newer emerging cryptographic schemes will also significantly depend on the trustworthiness of the

TPAs. Furthermore, recently proposed decentralized TPA approaches that lower the threshold on the conditions required

for an entity to become an authority can make the trust issue much worse. To address this issue, we propose an authority

transparency framework to ensure the trustworthiness of TPAs of recent and emerging advanced cryptographic schemes. The

framework includes a formal model and a secure logging based approach to implement the framework. Further, to address the

issues related to privacy, we also present a privacy-preserving authority transparency approach. We present security analysis

and performance evaluation to show that authority transparency achieves the security and performance goals.

CCS Concepts: • Security and privacy → Usability in security and privacy; Trust frameworks; Domain-specific

security and privacy architectures; Access control; Key management; Public key (asymmetric) techniques; Security services.

Additional Key Words and Phrases: transparency, audit, trusted authority, access control, secure computation

ACM Reference Format:

Runhua Xu and James Joshi. 2020. Trustworthy and Transparent Third Party Authority. ACM Trans. Internet Technol. 1, 1

(March 2020), 23 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
The trust that people place on Internet services or IoT devices has been decreasing because of the increased number

of data breaches, digital certificate issues, and threats from IoT devices seen in recent times [1, 24, 28, 42, 48].

On the other hand, with the explosion of data, it is difficult for users to store, manage, and process all their data

without the help of such third party services. Hence, it is critical that trust on third party services, especially

those that store sensitive user data is very critical. To tackle such a crisis of trust, two alternative approaches have

emerged in the literature: (i) adopting cryptographic mechanisms to protect outsourced data, and (ii) increasing

trust on service providers requiring them to provide openness and accountability. Even though systems that

maintain users’ outsourced data are compromised, existing cryptographic approaches such as the mechanisms

proposed in [4, 7, 10, 23, 27, 29, 30, 39, 45] can ensure the confidentiality of the data while supporting access

control and secure computation. The provisioning of openness and accountability, also referred to as transparency

This research work is supported by the National Science Foundation grant DGE-1438809.

Authors’ address: Runhua Xu, runhua.xu@pitt.edu; James Joshi, jjoshi@pitt.edu, School of Computing and Information, University of

Pittsburgh, 135 North Bellefield Avenue, Pittsburgh, Pennsylvania, United States, 15260.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first

page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy

otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from

permissions@acm.org.

© 2020 Association for Computing Machinery.

1533-5399/2020/3-ART $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Trans. Internet Technol., Vol. 1, No. 1, Article . Publication date: March 2020.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 • Runhua Xu and James Joshi

Fig. 1. An illustration of advanced crypto schemes for secure computation and access control on encrypted sensitive data
outsourced to a cloud. The numbers indicate a typical sequence of operations.

in recent literature [16, 21, 22, 32, 34, 38, 40], can additionally help increase users’ trust or confidence on service

providers with respect to the protection of their sensitive data.

Recent advances in cryptography-based access control and secure computation approaches such as the predicate

encryption schemes [27, 29], functional encryption schemes [10, 23, 45], attribute based encryption schemes [2, 15,

26, 37, 39], and access control encryption schemes [4, 30] have enabled a public cloud to provide secure computation,

and secure storage and management services for users’ sensitive outsourced data. For simplicity, we refer to these

as advanced crypto schemes in the rest of the paper. By“advanced”, we typically mean cryptographic schemes

that cannot necessarily be built from the traditional primitives and use more modern/emerging approaches that

rely on a third party authority (TPA) to provide a private key service. These advanced crypto schemes support

data confidentiality with additional features such as access control, and secure computation over encrypted

data. For instance, a functional encryption approach proposed in [10] allows computation of several functions

directly over encrypted data. The ciphertext policy attribute-based encryption scheme proposed in [7] is ideal for

supporting fine-grained access control over sensitive data outsourced in the cloud storage, while an access control

encryption scheme proposed in [30] can restrict information flow in terms of users’ read and write permissions.

Fig. 1 illustrates a typical application of such advanced crypto schemes for secure computation and access control.

A user can encrypt his sensitive data with a specified access policy over a set of attributes, and outsource it to a

public cloud for secure storage, access management and secure computation. If a user needs to access such data,

he can be given a private key that is generated by the associated trusted TPA based on his identities. If the user’s

attributes satisfy the access policy, he can access the data by decrypting the encrypted data using this private key.

In these advanced crypto schemes, the trusted TPA is a critical component that usually sets up the public

parameters and generates private keys for the users. Trust on the TPA is an important assumption in these

systems. However, such a trust assumption is not practical for real world deployment [35, 36]. Although such

systems are not widely used over the Internet, various attacks [5, 11, 47] and mis-issuance problems [17, 31, 41]

have been encountered in existing deployed TPA components such as certificate authorities (CAs). The CAs are

the underlying public key infrastructure for SSL/TLS protocol, and such possible attacks indicate that establishing

trustworthiness of TPAs is critical for the success of any scheme that relies on a TPA. According to the survey in

[31] related to the existing CA infrastructures, even though only 0.02% of total certificates violated the standards

from IETF and CA/Browser Forum in 2017, the mid-sized and a long tail of small authorities made a variety of

errors resulting in mis-issuance of more than 10% of their respective certificates. Such similar misbehavior or

mistakes in the collaborative TPA infrastructure increases the trust concerns. Furthermore, an authority can

also become untrusted when it is under stealth targeted and/or censorship attacks from insider threat agents

(e.g., malicious staff managing the authority); this issue can get much worse in a collaborative TPA environment.

To the best of our knowledge, solutions to ensuring trust on the TPAs within the context of advanced crypto

schemes have not been investigated yet.

ACM Trans. Internet Technol., Vol. 1, No. 1, Article . Publication date: March 2020.

Trustworthy and Transparent Third Party Authority • 3

(a) transparency overlay illustration (b) authority transparency illustration

Fig. 2. An overview of transparency overlay and authority transparency. Note that the angle brackets denote the interaction
protocols required in the transparency framework. Compared to transparency overlay, the crucial improvement in authority
transparency is integrating auditor and monitor into client and introducing secure three-party log interaction to audit the
key service process in advanced cryptography systems.

In this paper, we propose a notion of authority transparency to address the above mentioned trust issue in
a third party authority component of advanced crypto schemes. The proposed notion is inspired by the recently

proposed notions of certificate transparency [34] and transparency overlay [16] that focus on certificate authorities.

Transparency overlay is an initial formal study of the certificate transparency framework previously proposed

in [32, 34]. As illustrated in Fig. 2, we differentiate the notion of transparency overlay with that of authority

transparency. The transparency overlay framework can support a SSL certification system, but cannot be used in

advanced crypto schemes because of the following issues: (i) unlike in conventional public key system, where

the certificate authority only needs to issue a certificate that proves the “identity-to-public-key” binding, the

TPA in an advanced crypto scheme is responsible for more complex tasks such as setting public parameters,

managing fine-grained identities/attributes, generating private keys for users, etc.; (ii) the SSL certificate is the

only object that is submitted by an issuer for auditing in the certificate transparency framework, while the audited

objects in our authority transparency capture multiple rounds of interactions between the TPA and the client; (iii)

the volume of audited objects such as attribute identity related public parameters can be much larger than the

volume of certificates, thus, increasing the complexity of the auditing tasks. A separate auditor/monitor setting

in a transparency overlay framework may not handle such a case efficiently. In the proposed work, we integrate

the role of auditor and monitor into a client. As a result, it makes each actor (i.e., the service user of TPAs) to be

an audit participant in the transparency operations. More detailed formalization and framework is presented in

Section 3 and Section 4. We summarize our key contributions as follows:

(1) We present several attacks on the existing TPA infrastructures that may be possible from insider threat

agents, and illustrate trust issues caused by such attacks.

(2) To address the issue of trusting a TPA, we propose a new notion of authority transparency and present

an implementation approach, namely, secure logging based transparency framework. Essentially, unlike

certificate transparency, our proposed authority transparency approach audits not only the objects such as

certificates and public keys, but also the interactions such as those in a private key service procedure.

(3) We also present an attack to illustrate the privacy issue in the proposed authority transparency framework,

and propose a privacy-preserving authority transparency model.

(4) We present an analysis of security properties and performance evaluation of our proposed authority

transparency framework.

Organization. The rest of the paper is organized as follows. In Section 2, we introduce the motivation of our

proposed work. We present the proposed notion of authority transparency with formal description and the

ACM Trans. Internet Technol., Vol. 1, No. 1, Article . Publication date: March 2020.

4 • Runhua Xu and James Joshi

privacy-preserving authority transparency in Section 3. We present a secure logging based framework in Section 4,

and the security analysis and performance evaluation in Section 5. We review the related work in Section 6 and

present the conclusions in Section 7.

2 MOTIVATION
Emerging advanced crypto schemes support more features, such as cryptography-based access control (CBAC)

and secure data processing, than conventional public key schemes. As mentioned earlier, a TPA is a fundamental

component of most existing advanced crypto schemes and the TPA’s trustworthiness is critical for its successful

deployment. Essentially, the TPA here is responsible for setting up the public keys including common components

and parameters related to users’ attribute identities, and generating the private keys based on users’ attribute

identities. However, existing TPAs still bear several limitations that hinder wider deployment of advanced crypto

schemes. Here, we summarize such limitations as follows:

i Large and evolving sets of attributes. A large organization typically has a huge set of attributes. This in-

creases the complexity of attribute management, attribute authentication and attribute-related computation.

Furthermore, a set of organizations served by the same TPA may constantly change as newer organizations

seek services from the TPA and the existing ones leave. This makes 𝑆𝑈 , as in Example 3.1, to constantly

change, introducing additional burden to the TPA.

ii Single point of failure. The central authority becomes a central point of failure or the main target of attacks.

A compromised or malicious TPA can continue serving the users/organizations without being detected

until significant damage has been done.

iii Trustworthiness of TPA. The fact that an authority needs to be fully trusted by all the organizations and

users is a strong assumption and is not practical in real scenarios where various threats, including from

insiders, exist.

Recent research efforts related to TPA infrastructures have mainly focused on improving efficiency [15, 26, 37].

For instance, a group of collaborative TPAs enable or support applications where one party can share data using

attribute identities from different domains and organizations. Hierarchical or decentralized TPA schemes have

been proposed in the literature [15, 26] to tackle limitation (i); however, they still require a global or central

authority to coordinate distributed authority servers. The dependency on the global authority, and the need to

fully trust it, make it the bottleneck of the system. To address the limitation (ii), a decentralized TPA approach

such as in [37] enables an organization or an individual to simply act as a TPA without any need of a global

coordination. Thus, any entity can become a TPA that manages and authenticates the attributes to provide a key

service.

Although approaches proposed in [15, 26, 37] provide a significant promise for a more practical TPA for an

advanced crypto scheme, neither traditional TPA nor collaborative TPA addresses limitation (iii). Essentially,

TPA approaches proposed in [15, 26] increase complexity of TPA architectures, while the approach proposed in

[37] relaxes the strict condition required for becoming an authority, and it allows any party to become a TPA.

Thus, these newer approaches further increase the concerns related to limitation (iii).

3 AUTHORITY TRANSPARENCY
To address the above-mentioned concerns, we propose authority transparency as the mitigation approaches. Here

we first present related notations and terminologies. Then we propose attacks on TPAs and introduce the details

of our proposed work to prevent such attacks.

ACM Trans. Internet Technol., Vol. 1, No. 1, Article . Publication date: March 2020.

Trustworthy and Transparent Third Party Authority • 5

3.1 Notation and Terminology
3.1.1 Generalization of Advanced Crypto Schemes. Advanced crypto schemes allow selective access and secure

computing over encrypted data via a combination of key management and functional cryptographic schemes.

Phases. A typical advanced cryptography scheme can be generalized to have the following four phases:

(i) Setup/Initialization phase. The TPA sets up public parameters according to a universal attribute set for the

specified crypto system.

(ii) Encryption phase. A data owner encrypts the data by using a set of public parameters or a specified access

policy over the attribute identity set for access control purpose.

(iii) Private key service phase. The TPA generates users’ private keys based on their authenticated attribute

identities.

(iv) Decryption phase. An authorized user decrypts the ciphertext by using the private key received from the

TPA based on his attribute identity as per (iii).

Roles. In any advanced crypto scheme, there are three typical entities, data owner (Cowner), data user (Cuser),
and the TPA (T). Cowner employs an Encrypt algorithm to protect the outsourced sensitive data. Cuser employs a

Decrypt algorithm and the private keys obtained from the TPA to process/decrypt the sensitive data. The TPA is

responsible for phases (i) and (iii) above. Here, we generalize two types of TPAs from the existing work, namely,

Traditional TPA and Collaborative TPA, as illustrated in Example 3.1 and Example 3.2, respectively.

Example 3.1. Traditional TPA. Suppose there are three organizations, org𝑥 , org𝑦 and org𝑧 that use attribute

sets 𝑆𝑥 , 𝑆𝑦 and 𝑆𝑧 , respectively. They employ T for their deployed advanced crypto scheme. For the initial setup,

T first needs to collect the attribute identity sets from all the organizations; i.e., 𝑆𝑈 = 𝑆𝑥 ∪ 𝑆𝑦 ∪ 𝑆𝑧 . Then, the
TPA generates the corresponding public parameters based on 𝑆𝑈 and provides the private key service.

Example 3.2. Collaborative TPA. Suppose that organizations org𝑥 , org𝑦 and org𝑧 manage attribute sets 𝑆𝑥 , 𝑆𝑦 and

𝑆𝑧 , respectively. Each organization can set up its own TPA, T𝑥 , T𝑦 , and T𝑧 , respectively, also called self-authority,

to provide advanced cryptography services. Suppose that Cowner wants to outsource his data using a CBAC

mechanism with a specified access policy; let the policy be: “anyone who is a manager of org𝑥 , or a professor of

org𝑦 , and is also a member of org𝑧 can access the data”. Here we use att𝑎 ∈ 𝑆𝑥 , att𝑏 ∈ 𝑆𝑦 and att𝑐 ∈ 𝑆𝑧 to represent

the attribute identities as follows: att𝑎 ↔ T𝑥 :org𝑥 :manager, att𝑏 ↔ T𝑦 :org𝑦 :professor, att𝑐 ↔ T𝑧 :org𝑧 :member.

Thus, the above policy can be expressed as: (att𝑎 OR att𝑏) AND att𝑐 . To acquire access privilege, Cowner needs to
request public parameters from T𝑥 , T𝑦 , and T𝑧 , respectively. Any Cuser who wants to access the data also needs to

request for a key service from the corresponding authorities.

3.1.2 Generalization of Identity. To maintain the generality of the TPA in the advanced crypto schemes, we

formalize the parameters and identities that will be used in the rest of the paper. We classify the identity

information in an advanced crypto system as unique identity and attribute identity.

Definition 3.3. Unique Identity. Let 𝑖𝑑𝑢𝑛𝑖 (·) be the unique identity function capable of generating a unique

identifier of an entity 𝑒 . The unique identity of 𝑒 is denoted as 𝑖𝑑𝑢𝑛𝑖 (𝑒).

Definition 3.4. Attribute Identity. Let 𝑖𝑑𝑎𝑡𝑡𝑟 (·) be the attribute identity function that generates the attribute

value of 𝑎 in the advanced crypto system. The attribute identity of 𝑎 is denoted as 𝑖𝑑𝑎𝑡𝑡𝑟 (𝑎).

Each unique identity represents one and only one entity in the digital world. For instance, the email account

could be a unique identity. In practice, 𝑖𝑑𝑢𝑛𝑖 (·) can be represented by a collision resistant hash function. To avoid

naming conflicts, the domain information is introduced as a prefix into the attribute identity. For instance, in

the attribute identity “𝑖𝑑𝑢𝑛𝑖 (𝑎𝑢𝑡ℎ):𝑖𝑑𝑢𝑛𝑖 (𝑜𝑟𝑔):𝑎”, the prefixes 𝑖𝑑𝑢𝑛𝑖 (𝑎𝑢𝑡ℎ) and 𝑖𝑑𝑢𝑛𝑖 (𝑜𝑟𝑔) represent the authority
and the organization that the attribute 𝑎 belongs to, respectively. Unlike unique identity, an attribute identity is

ACM Trans. Internet Technol., Vol. 1, No. 1, Article . Publication date: March 2020.

6 • Runhua Xu and James Joshi

Fig. 3. An illustration of an attack on public parameter distribution and private key service.

capable of representing a group of entities in the digital world. An access policy consists of a set of attribute

identities and logical conjunctions. Here, we use an example to illustrate the identities.

3.2 Attacks and Adversary Model
Here, we propose two kinds of attacks on TPAs that can be launched by an adversary such as amalicious/compromised

or a misbehaving insider. Below, we use the Collaborative TPAs (as in Example 3.2) as the authorities.

Attack 1. Attack on distribution of public parameters. The target of such an attack could be any data

owner Cowner. Suppose that Cowner employs an advanced crypto scheme to outsource sensitive data with access

policy: “(att𝑎 OR att𝑏) AND att𝑐”, as shown in Fig. 3. Then, he acquires related public parameters, e.g., 𝑝𝑎𝑟𝑎fixed-x,

𝑝𝑎𝑟𝑎fixed-y, 𝑝𝑎𝑟𝑎fixed-z, 𝑝𝑎𝑟𝑎𝑎 , 𝑝𝑎𝑟𝑎𝑏 , 𝑝𝑎𝑟𝑎𝑐 , from T𝑥 , T𝑦 , and T𝑧 , respectively. At this time, a malicious insider or

a compromised TPA, say T𝑦 , can replace 𝑝𝑎𝑟𝑎𝑏 with 𝑝𝑎𝑟𝑎𝑑 . The data owner thinks that he has encrypted the

data using the parameter related to attribute att𝑏 , while the data has actually been protected under attribute

identity “T𝑦 :org𝑦 : student”. As a result, any user who is a member of 𝑜𝑟𝑔𝑦 , with extra attribute identity, namely,

“T𝑦 :org𝑦 :student”, rather than “T𝑦 :org𝑦 :professor” can now access the data.

Attack 2. Attack on private key service. The target of such an attack could be any user Cuser. Suppose that
Cuser needs to access the encrypted data with access policy: “(𝑎𝑡𝑡𝑎 OR 𝑎𝑡𝑡𝑏) AND 𝑎𝑡𝑡𝑐”, and he has two attribute

identities “T𝑦 :org𝑦 :professor” and “T𝑧 :org𝑧 :member”, as shown in Fig. 3. He sends his attribute identities to authority

T𝑦 and T𝑧 to request the corresponding private keys, 𝑝𝑟𝑖𝑣𝑏 and 𝑝𝑟𝑖𝑣𝑐 , and the expected private key 𝑝𝑟𝑖𝑣𝑏 may be

replaced by an invalid one, 𝑝𝑟𝑖𝑣𝑑 , or it may never be generated. This can be caused by an insider or a compromised

T𝑦 . This impacts the expected functioning of the advanced crypto system by denying a valid access or processing.

Here, users may think their attribute identities have been revoked (because of unsuccessful decryption), even

when they are actually valid.

Essentially, an adversary can launch Attack 1 by distributing compromised public parameters to a target user

without being detected by that user. A success of Attack 2 indicates that there is a lack of a mechanism to ensure

the correct functioning of the key service of a TPA. Attack 1 can be classified as identity-to-public-key-binding

stealthy targeted attack, and Attack 2 is a private-key-service censorship attack. Such attacks exacerbate the issue

of trusting a TPA. Hence, establishing trust through openness and accountability of a TPA is critical in ensuring

users’ confidence in using advanced crypto schemes. Potential solutions to address this issue, to the best of our

knowledge, have not been investigated in the literature.

Adversary Model. As illustrated in Attacks 1 and 2, we consider an adversary to be any entity within a advanced

crypto scheme that is dishonest. We assume that such a dishonest adversary may pretend to behave honestly

without being detected by other participants. Adversaries may not follow the specification in the protocols,

and/or attempt to conceal their activities. A dishonest adversary may be a TPA, a user, or a logger. In particular, a

ACM Trans. Internet Technol., Vol. 1, No. 1, Article . Publication date: March 2020.

Trustworthy and Transparent Third Party Authority • 7

Fig. 4. An overview of secure logging based authority transparency framework. Note that the steps (i.e., 2.1, 3.1, 3.2, 4.1,
4.3, 4.5) represent a typical cryptography based access control scenario. The blue dotted lines are the integrated authority
transparency features. The sequence numbers indicate the operation flow of the scenario where a data owner shares the
sensitive data within the authority transparency framework.

dishonest logger may try to present inconsistent versions of the log to other entities; a dishonest TPAmay attempt

to forge a key service proof of work without actually providing a valid key service; and, a dishonest entity may

try to incorrectly blame other entities for misbehavior. Note that misbehavior may be related to non-malicious

misuse by normal entities or the behavior of the compromised entities controlled by an attacker.

3.3 Overview of Authority Transparency
To tackle the trust issue of TPA, we propose the notion of authority transparency and an implementation approach,

i.e., secure logging based authority transparency framework, as illustrated in Fig. 4. The secure logging based

authority transparency framework consists of the following entities:

(i) Third Party Authority. It refers to a TPA in advanced crypto schemes (see Section 3.1.1). However, the TPA

has more obligations to fulfill in our framework including (a) submitting its unique authority identity and

attribute identity bindings to the secure logging system, and (b) reporting its fulfillment of obligations in

the key service process by sending a response key service snapshot for each user’s request.

(ii) Secure Public Logger. Loggers initialize and maintain a publicly auditable append-only ledger that will be

introduced later. Loggers are also required to respond to the audit queries by sending different cryptographic

proofs such as audit proof and consistency proof.

(iii) Owner/User. Owners/users employ encryption and decryption algorithms.

(iv) Client. Users employ client software on their trusted devices, hence, our framework does not address the

issues such as compromised clients. The clients act on behalf of owners/users in the framework. It also acts

as the monitor and auditor, as in the certificate transparency framework.

Additional duties of clients in our framework are as follows: (i) on behalf of a user, they request public

parameters or private keys based on users’ attribute identities; (ii) they monitor and audit the public ledger

using gossiping, audit proof and consistency proof protocols that have been discussed in [16, 21, 34]; (iii) They

participate in the key service audit obligation process.

3.4 Model of Authority Transparency
The proposed authority transparency framework increases the transparency of a TPA infrastructure in advanced

crypto systems. In particular, it supports monitoring and auditing of the public credentials generated and the

ACM Trans. Internet Technol., Vol. 1, No. 1, Article . Publication date: March 2020.

8 • Runhua Xu and James Joshi

private key service provided by a TPA. Here, we first define two notations, namely, public parameter audit

obligations and key-service audit obligations.

Definition 3.5. Identity Binding. An identity binding is a key-value pair, namely, B = (𝑘id, 𝑣para), where 𝑘id
represents the identity defined in Definition 3.3 and Definition 3.4, and 𝑣para denotes the corresponding public

parameter.

Definition 3.6. Public Parameter Audit Obligation (PPAO). A PPAO element Opp is a two-tuple (B𝑡𝑦𝑝𝑒 , Sig𝑒)
whereB is an identity binding that needs to be audited and 𝑡𝑦𝑝𝑒 ∈ {𝑖𝑑𝑢𝑛𝑖 (·), 𝑖𝑑𝑎𝑡𝑡𝑟 (·)}. Sig𝑒 indicates the signature
of entity 𝑒 .

Note that the identity binding has been used in certificate transparency [34] and its variant [38]. Here, we

extend the scope of identity to refer to not only a unique fact related to who or what an entity is, but also to

a more general concept of a group of entities. For instance, “social security number” or “email account” that

represents a unique user could be an identity; similarly, “faculty member of university 𝑥” that represents a group

of professors is also an identity. An attribute can also be an identity, referred to as attribute identity. In addition,

the TPA has the obligation to send the PPAO element to the logger for auditing. O𝑝𝑝 consists of identity bindings

related to a specific TPA. Here, we use an example to illustrate these.

Example 3.7. Suppose that an authority T𝑥 provides services for a university 𝑜𝑟𝑔𝑎 and a medical center 𝑜𝑟𝑔𝑏 .

The possible general identity binding and attribute identity binding are as follows:

Bunique = (𝑖𝑑𝑢𝑛𝑖 (T𝑥), pkT𝑥 ,RSA) Battribute = (𝑖𝑑𝑎𝑡𝑡𝑟 (student), pkT𝑥 ,Π [para1])
Thus, possible public parameter audit obligations O𝑝𝑝 are as follows: (Bunique, SigT𝑥) and (Battribute, SigT𝑥), where
pkT𝑥 ,RSA is a RSA public key of TPA. T𝑥 and pkT𝑥 ,Π [para1] indicate the public key component corresponding to

attribute identity 𝑖𝑑𝑎𝑡𝑡𝑟 (student) using advanced crypto scheme Π.

Here, we define key service audit obligations as below.

Definition 3.8. Key Service Snapshot. A key service snapshot is a 7-tuple as follows:

S = (𝑣, 𝑖𝑑𝑢𝑛𝑖 (𝑒source), 𝑖𝑑𝑢𝑛𝑖 (𝑒target), 𝑡, 𝑟 , 𝜎, Sig𝑒source),
where 𝑣 = ℎ𝐶𝑅𝐻𝐹 (𝑆attr, 𝑟) is a unique value derived from an attribute set 𝑆attr that is used in the key request service

interaction and 𝑟 is the protocol execution indicator indicating a specific round of the key service. ℎ𝐶𝑅𝐻𝐹 (·) takes
attribute set 𝑆attr as the input and generates a unique value. 𝑖𝑑𝑢𝑛𝑖 (𝑒source) and 𝑖𝑑𝑢𝑛𝑖 (𝑒target) are the unique identity
components of the service source and target entity, respectively. 𝑡 is the timestamp component of the service. 𝜎

indicates the proof of work. Sig𝑒source
is the signature of the snapshot signed by the source entity.

Definition 3.9. Key Service Audit Obligation (KSAO). AKSAO elementOks = (Sreq,Sresp), consists of a pair of
key service snapshots, namely, a request key service snapshot, Sreq, and a response key service snapshot, Sresp, such
that, (1) Sreq.𝑣 = Sresp.𝑣 , (2) Sreq .𝑖𝑑𝑢𝑛𝑖 (𝑒source) = Sresp .𝑖𝑑𝑢𝑛𝑖 (𝑒target), (3) Sreq .𝑖𝑑𝑢𝑛𝑖 (𝑒target) = Sresp.𝑖𝑑𝑢𝑛𝑖 (𝑒source),,
(4) Sreq .𝑡 < Sresp .𝑡 , (5) Sresp .𝑡 − Sreq.𝑡 < Δ𝑡 , where Δ𝑡 is the threshold of timestamp difference indicating the

expected time of processing of the key service request by the TPA.

Note that the key service snapshot is a record that can be used to represent request and response snapshots

of key service generated by users and authorities, respectively. One possible way to implement the snapshot

function ℎ𝐶𝑅𝐻𝐹 (·) is to use a collision-resistant hash function (CRHF), e.g., SHA-2 or SHA-3. Sreq represents the
key service snapshot of the key service requester, i.e., clients, and Sresp denotes the key service snapshot of the

key service responder, the TPA. The TPA and client both have the obligation to send their parts of the KSAO

elements to the logger for auditing. Constraint (1) ensures matching a user’s request with the corresponding

ACM Trans. Internet Technol., Vol. 1, No. 1, Article . Publication date: March 2020.

Trustworthy and Transparent Third Party Authority • 9

Authority Transparency AT T ,L,C
O

1 : (SOpp , SOks
)← Run(1λ,GenO,{T , C.actor})

2 : (bT , ε)← Run(1λ,LogOpp
,{T ,L} , (SOpp , ε))

3 : (bT , bC , ε)← Run(1λ,LogOks
,{T , C.actor,L} , (ε,Oks[SC],Oks[ST]))

4 : (ε, bC.actor, bC.auditor)← Run(1λ,CheckO,{L, C.actor, C.auditor} , (ε,O, ε))
5 : (bL, ε)← Run(1λ, Inspect,{L, C.monitor} , (ε, ε))
6 : (evidence)← Run(1λ,Gossip,{C.auditor, C.monitor} , (ε, ε))

1

Fig. 5. The interactive protocols for authority transparency. Note that we adopt the notation from [6]. The order of parameters
in the input tuple and the order of elements in the output are consistent with participant entities. Taking second interactive
protocol as an example, participant entity T has the input 𝑆O𝑝𝑝 and outputs 𝑏T , while entity L has no input and output
denoted as 𝜀, where 𝑆O𝑝𝑝 and 𝑆O𝑘𝑠 are the set of O𝑝𝑝 and O𝑘𝑠 elements, respectively.

TPA response on the same attribute set. Constraints (2) and (3) check to ensure that the obligation is a pair of

request and response. Time related constraints (i.e., (4) and (5)) ensure that the Sresp is a fresh response to the

corresponding Sreq.
In our model, we separate the PPAO into two parts, namely, the unique PPAO of the TPA, Opp,authority, and the

attribute PPAO of the TPA, Opp,attribute, because the set of authority identity bindings is relatively more stable

than the set of attribute identity bindings in O𝑝𝑝 . In particular, (i) once the identity of an authority has been set

up and broadcast, it does not need to be updated; (ii) on the other hand, the attribute identities managed by the

authority may occasionally vary as users’ privileges can be revoked - hence, we divide O𝑝𝑝 into two separate

streams; (iii) the key service snapshot is taken in each round of key request/response; hence, the key service

audit obligation varies in each interval. Thus, three types of audit obligations need to be recorded separately.

Here, we compare them with existing approaches:

(i) Opp,authority includes the authority’s unique identity bindings, which is similar to digital certificates in

certificate transparency in [34];

(ii) Opp,attribute includes all the attribute identity bindings, which is similar to public keys of end users in key

transparency in [38], but it is more complex than users’ public keys since the attribute identity related

parameters are the basic elements of existing advanced crypto schemes to provide access control and secure

computing features;

(iii) KSAO is another concept we have proposed; it has not been studied in the existing literature.

3.4.1 Authority Transparency. We model authority transparency as a publicly auditable set of TPA’s activities. In

particular, the goal is to ensure that the TPA fulfills its auditing obligations related to public parameter distribution

and trustworthy key service, continuously and transparently. Towards this, we specify the interactive protocols

as below.

Definition 3.10. Authority Transparency. Let T ,L and C denote the third party authority, logger server, and

client, respectively, which are parties involved in the interactive protocols. Let C.𝑎𝑐𝑡𝑜𝑟, C.𝑎𝑢𝑑𝑖𝑡𝑜𝑟 and C.𝑚𝑜𝑛𝑖𝑡𝑜𝑟

represent the roles of the actor, auditor and monitor that execute the functional, auditing and monitoring modules,

respectively. We define authority transparency as a set of six interactive protocols:

AT = (GenO, LogO𝑝𝑝 , LogO𝑘𝑠 ,CheckO, Inspect,Gossip),

where each protocol is as specified in Fig. 5.

ACM Trans. Internet Technol., Vol. 1, No. 1, Article . Publication date: March 2020.

10 • Runhua Xu and James Joshi

As depicted in Fig. 5, the protocols are as follows: (1) GenO is an interactive protocol between T and C.𝑎𝑐𝑡𝑜𝑟
that generates the audit obligations to be logged; (2) LogO𝑝𝑝 is an interactive protocol between T and L that is

used to record O𝑝𝑝 in the public log; (3) LogO𝑘𝑠 is an interactive protocol involving T , L and C.𝑎𝑐𝑡𝑜𝑟 that is used
to record O𝑘𝑠 in the public log; (4) CheckO is an interactive protocol involving L, C.𝑎𝑐𝑡𝑜𝑟 and C.𝑎𝑢𝑑𝑖𝑡𝑜𝑟 that is
used to check whether or not an audit obligation O𝑝𝑝 or O𝑘𝑠 is in the log; (5) Inspect is an interaction between

L and C.𝑚𝑜𝑛𝑖𝑡𝑜𝑟 that is used to allow the monitor to inspect the contents of the log and find suspicious audit

obligations {O𝑖 }; (6) Gossip is an interaction between C.auditor and C.monitor that is used to compare different

versions of the log and detect any inconsistencies caused by misbehavior on behalf of the log server.

Note that we adopt the notation of interactive protocol presented in [6]. In general, the behavior of a stateful

participant 𝑝 with input 𝑚 during the 𝑖-th round of the 𝑗-th execution of a protocol P can be defined as

(state𝑝 , out[𝑝𝑟𝑐𝑣], 𝑝𝑟𝑐𝑣, out[𝑝]) ← P[𝑝, 𝑖, 𝑗] (1𝜆, state𝑝 , in𝑝), where out[𝑝𝑟𝑐𝑣] denotes the message sent to receiver

𝑝𝑟𝑐𝑣 in the 𝑖-th round of the 𝑗-th execution. Thus, the execution of the entire interactive protocol can be defined

by outputs← Run(1𝜆,P, {𝑝1, 𝑝2, ..., 𝑝𝑛}, inputs), where 1𝜆 is the secure parameter indicating the number of bits

for secure related parameters, and {𝑝1, 𝑝2, ..., 𝑝𝑛} indicates the participant entities.
We also adopt the notation of a primitive called dynamic list commitment (DLC) that abstracts the secure

log infrastructure that has been formalized in transparency overlay in [16]. The specific DLC algorithms are

introduced in the Appendix. In practice, the DLC can be viewed as a generalization of a rolling hash chain or

hash tree.

The proposed authority transparency components have overlaps with transparency overlay components such as

Gossip and Inspect protocols. Furthermore, the protocols LogO𝑝𝑝 and CheckO are similar to the protocols Log and

CheckEntry presented in [16], respectively. Hence, we present these modified protocols in the appendix rather

than here.

We elaborate on the tripartite protocol Log
T,L,C
O𝑘𝑠 depicted in Fig. 6, that tackles the issue of auditing the key

service procedure. A request key service snapshot SC is generated by the client and sent to the logger that first

stores the SC temporarily. Then the logger provides a receipt and sends it back to the client for checking (lines

1-5). Simultaneously, the client initiates the key service request to the TPA. The TPA first handles the key request

and generates the key according to the attribute identities it receives. It forms the response key service snapshot

ST as defined in Definition 3.8 (line 7). Then the TPA sends ST and the combination of ST and sk𝑎𝑡𝑡𝑟 back to

the logger and the client, respectively (lines 8 and 12). The logger generates a receipt and sends back to the

TPA for checking (lines 9-11), while the client verifies the ST by using its received private key sk𝑎𝑡𝑡𝑟 and sends

the newly formed key service snapshot S′C to the logger (lines 13-14). Finally, the logger verifies and forms a

valid O𝑘𝑠 according to received S′C,SC , and ST , and then commits to the log system by adopting the dynamic

list commitments primitive with two receipts for the client and the TPA, respectively (lines 15-17). The client

and TPA finalize key service audit obligation by combining the results from checking the receipts they received

to confirm whether or not they believe the logger behaved honestly (line 18). We generalize {𝑖𝑑𝑎𝑡𝑡𝑟 (𝑎𝑖)} and
sk𝑎𝑡𝑡𝑟 to represent the messages of a key service procedure (lines 6 and 12 in blue color). The operations of each

participant presented in the protocol Log
T,L,C
O𝑘𝑠 are defined in Fig. 6.

GenKSSC takes the set of attribute identities as input. It first generates a random nonce 𝑟 as the unique identifier

for the interaction. Then it returns the audit obligation as defined in Definition 3.8. Note that the client is not the

provider of the service, hence, we keep the component 𝜎 as null.

GenStageRcpt takes the key service snapshot ST or SC as the input. It first adopts the stage algorithm to store ST .
If the snapshot is stored successfully, the logger will generate a receipt that includes the public key, timestamp

and a signature. Note that the key service snapshot is the component to form the element of KSAO, hence, the

stage algorithm aims at storing the key service snapshot temporarily rather than permanently. The function

CheckRcpt takes the receipt and the snapshot as input to verify the logger’s signature.

ACM Trans. Internet Technol., Vol. 1, No. 1, Article . Publication date: March 2020.

Trustworthy and Transparent Third Party Authority • 11

Protocol LogT ,L,C
Oks

C(pkC ,skC) L(pkL,skL) T(pkT ,skT)

1 : [SC ← GenKSSC({idattr(ai)})]

2 :
SC−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

3 : [rcptstage ← GenStageRcpt(SC)]

4 :
rcptstage←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

5 : [bC ← CheckRcpt(rcptstage,SC)]
. ↑ (Phase 1)|(Phase 2) ↓ .

6 :
({idattr(ai)} , r), Sig(skC , ({idattr(ai)} , r))−−→

7 : [ST ← GenKSST ({idattr(ai)} , r)]

8 :
ST←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

9 : [rcptstage ← GenStageRcpt(ST)]

10 :
rcptstage−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

11 : [bT ← CheckRcpt(rcptstage,ST)]

. ↑ (Phase 2)|(Phase 3) ↓ .

12 :
skattr, Sig(skT , skattr),ST←−−

13 : [S ′
C ← GenKSS

′
C(skattr, Sig(skT , skattr),ST)]

14 :
S ′
C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

15 : [rcptcmt ← GenCommitRcpt(S ′
C ,SC ,ST)]

16 :
rcptcmt,C←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

rcptcmt,T−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
17 : [b

′
C ← CheckRcpt(rcptcmt,C ,SC)] [do DLC.append((SC ,ST))] [b

′
T ← CheckRcpt(rcptcmt,T ,ST)]

18 : [return bC ∧ b
′
C] [return ε] [return bT ∧ b

′
T]

1

GenKSSC(Sattr)

r←$ {0, 1}
x← (hCRHF (Sattr, r), idC , idT , t, r,null)

return (x, Sig(skC , x))

GenKSST (Sattr, r)

skattr ← KGen(Sattr)

x← (hCRHF (Sattr, r), idT , idC , t, r, hCRHF (skattr, t))

return (x, Sig(skT , x))

CheckRcpt(rcpt,S)
return Vf(pkC , Sig(skT , (rcpt[t],S)), rcpt[Sig])

GenKSS
′
C(skattr,Sig(skT , skattr),ST)

if Vf(pkT , skattr,Sig(skT , skattr))

and Vf(pkT ,ST ,ST .Sig)
and ST .σ == hCRHF (skattr, t) then

return (ST , Sig(skC ,ST))

return failure

GenStageRcpt(S)
if stage(S) == true then

return (pkL, t, Sig(skL, (S, t)))
return failure

GenCommitRcpt(S ′
C ,SC ,ST)

if commit(S′
C) == true then

rcptcmt,C ← (pkL, t, Sig(skL, (SC , t)))
rcptcmt,T ← (pkL, t, Sig(skL, (ST , t)))
return (rcptcmt,C , rcptcmt,T)

return failure

1

GenKSSC(Sattr)

r←$ {0, 1}
x← (hCRHF (Sattr, r), idC , idT , t, r,null)

return (x, Sig(skC , x))

GenKSST (Sattr, r)

skattr ← KGen(Sattr)

x← (hCRHF (Sattr, r), idT , idC , t, r, hCRHF (skattr, t))

return (x, Sig(skT , x))

CheckRcpt(rcpt,S)
return Vf(pkC , Sig(skT , (rcpt[t],S)), rcpt[Sig])

GenKSS
′
C(skattr,Sig(skT , skattr),ST)

if Vf(pkT , skattr,Sig(skT , skattr))

and Vf(pkT ,ST ,ST .Sig)
and ST .σ == hCRHF (skattr, t) then

return (ST , Sig(skC ,ST))

return failure

GenStageRcpt(S)
if stage(S) == true then

return (pkL, t, Sig(skL, (S, t)))
return failure

GenCommitRcpt(S ′
C ,SC ,ST)

if commit(S′
C) == true then

rcptcmt,C ← (pkL, t, Sig(skL, (SC , t)))
rcptcmt,T ← (pkL, t, Sig(skL, (ST , t)))
return (rcptcmt,C , rcptcmt,T)

return failure

1

GenKSSC(Sattr)

r←$ {0, 1}
x← (hCRHF (Sattr, r), idC , idT , t, r,null)

return (x, Sig(skC , x))

GenKSST (Sattr, r)

skattr ← KGen(Sattr)

x← (hCRHF (Sattr, r), idT , idC , t, r, hCRHF (skattr, t))

return (x, Sig(skT , x))

CheckRcpt(rcpt,S)
return Vf(pkC , Sig(skT , (rcpt[t],S)), rcpt[Sig])

GenKSS
′
C(skattr,Sig(skT , skattr),ST)

if Vf(pkT , skattr,Sig(skT , skattr))

and Vf(pkT ,ST ,ST .Sig)
and ST .σ == hCRHF (skattr, t) then

return (ST , Sig(skC ,ST))

return failure

GenStageRcpt(S)
if stage(S) == true then

return (pkL, t, Sig(skL, (S, t)))
return failure

GenCommitRcpt(S ′
C ,SC ,ST)

if commit(S′
C) == true then

rcptcmt,C ← (pkL, t, Sig(skL, (SC , t)))
rcptcmt,T ← (pkL, t, Sig(skL, (ST , t)))
return (rcptcmt,C , rcptcmt,T)

return failure

1

Fig. 6. The LogT,L,CO𝑘𝑠
protocol and related operations for authority transparency. Note that the text on the top of the arrow

indicates the message flow between entities and the square brackets denote the subsequent operations by the participant
entity. The dotted line indicates the division of the three-phase commitment. Sig and Vf represent a pair of signature and
verify functions, respectively. KGen denotes the key generation algorithm adopted in the CBAC system.

ACM Trans. Internet Technol., Vol. 1, No. 1, Article . Publication date: March 2020.

12 • Runhua Xu and James Joshi

GenKSST takes the set of attribute identity and the random nonce 𝑟 as input. It first employs the key generation

algorithm KGen of an advanced crypto scheme to generate the key sk𝑎𝑡𝑡𝑟 . Then it forms the response key service

snapshot as per Definition 3.8.

GenKSS

′

C takes key sk𝑎𝑡𝑡𝑟 received from T , the signature of a pair of private key and corresponding attribute

identity set, and the response ST as input. It first validates the key and the response ST . Then it verifies the

key-service proof of work component 𝜎 (see Definition 3.8), i.e., compares the CRHF results of received private

keys and request timestamp. If these validations are passed, it returns the verified response ST with the client’s

signature.

GenCommitRcpt takes the three key service snapshots as input. It first adopts commit algorithm to submit the

snapshot, and then generates the receipts for the client and the authority to confirm the success of enrolling O𝑘𝑠
in the log.

3.5 Privacy-Preserving Authority Transparency
Our proposed authority transparency has security guarantee under the presented adversary model. To tackle

the potential privacy disclosure issue under the adversary model, we present a privacy-preserving authority

transparency considering the cases of applying our proposed work in some privacy-sensitive scenarios.

Privacy Challenge. The PPAO and KSAO elements include components derived from the attribute identities that

potentially disclose users’ privacy. For instance, the attribute identity binding “auth𝑎 :org𝑥 :salary > 10𝑘 ↔ para𝑖”,

may disclose users’ income. Even though the bindings do not link to any particular user, it is still possible to

establish the link and leak the user’s privacy. Here, we present Attack 3 to illustrate the privacy issue.

Attack 3. The purpose of this attack is to link the attribute identity to a particular user. Suppose that there is a

set of O𝑝𝑝 elements used for audit; hence, the set of attribute identity bindings O𝑝𝑝 .B𝑎𝑡𝑡𝑟 is also public for all

clients. There are two possible ways to establish the link: (i) A curious adversary can remember a user’s audit

query for PPAO elements to find what attribute identity bindings a user wants to audit. Thus, an adversary

knows with a higher probability that these attribute identities may belong to the user. (ii) A curious adversary

can monitor a user’s audit query for the KSAO elements. As presented in Definition 3.8, 𝑣 is the hash of a set of

attribute identities and the protocol execution indicator (rounds); thus, there is no leakage of attribute privacy.

However, the hash function ℎ(·) and the PPAOs are public and the space of hash input, namely, the size of all

attribute identities, is limited. The adversary can use the attribute identity set that is gathered in PPAOs as the

input space to reverse 𝑣 by brute-force.

The public ledger that is maintained by loggers only provide audit service for clients; hence, it is still possible

to launch the privacy attack.

Privacy-Preserving Authority Transparency. The privacy-preserving authority transparency model adopts

an augmented key service snapshot as follows:

S = ⟨𝑣ℎ𝑘 (𝑆attr,𝑟) , 𝑖𝑑𝑢𝑛𝑖 (𝑒source), 𝑖𝑑𝑢𝑛𝑖 (𝑒target), 𝑡, 𝑟 , 𝜎, Sig𝑒source⟩
Unlike the snapshot depicted in Definition 3.8, the augmented model uses a keyed cryptographic hash function

ℎ𝑘 (𝑆attr).
To deal with privacy issue in (i) of Attack 3, our augmented framework increases the scope of audit PPAO by

each client. Suppose that a user has attribute identity set 𝑆attruser . In non-privacy-preserving design, his client only

audits the part of PPAO that is related to 𝑆attruser , which makes the approach (i) possible. To avoid such privacy

leakage, the client can audit PPAO related to 𝑆attruser ∪ 𝑆attrother . Here, 𝑆attrother is the additional attribute identity set

to perturb the users’ attribute set to avoid the inference of privacy sensitive information.

To address the privacy issue in (ii) of Attack 3, our augmented model uses a cryptographic hash function ℎ𝑘 (·)
to replace collision-resistant hash function ℎ(·). For instance, a hash-based message authentication code function,

ACM Trans. Internet Technol., Vol. 1, No. 1, Article . Publication date: March 2020.

Trustworthy and Transparent Third Party Authority • 13

i.e., HMAC𝑘 (·), which can generate the hash value of specified attribute set with a key. Here the shared key 𝑘 is

established between the user and the authority, which can be constructed using existing key agreement/exchange

protocols. As the shared key 𝑘 is secret for adversaries, they cannot recover the attribute identity set by a brute

force attack.

4 SECURE LOGGING BASED FRAMEWORK
The successful deployment of certificate transparency framework proposed in [32, 34] indicates the feasibility

of adopting a publicly auditable secure logging system. Adopting that approach, we propose our authority

transparency framework built on a secure logging framework. Unlike in certificate transparency where the

framework only needs to process relatively a smaller number of issued certificates and their revocations, our

authority transparency framework faces new challenges because of the volume and variety of requirements

related to managing public parameters and key service, and the associated audit obligations.

Note that compared to the volume of digital certificates managed in approaches proposed in [34, 38], our

framework needs to manage a much higher volume of identity bindings. Here, we integrate the auditor, monitor,

and gossiper roles together in our framework. All the clients can work together to verify the consistency of the

public append-only ledger and gossip with each other to check the misbehavior of loggers; thus all the clients

participant in the transparency procedure. To reduce the auditing burden, each client is only responsible for

auditing the unique/attribute identity bindings and KSAO elements that are related to its associated users. From

the perspective of a particular identity binding, the audit processes from clients on that identity binding are

overlapping. As a result, the frequency of auditing for a particular identity binding is based on the number of

users who have that identity. For instance, suppose that there are 1000 faculty members who need authority

service from 𝑎𝑢𝑥 in a university 𝑜𝑟𝑔𝑥 . The attribute identity binding, namely, “au𝑥 :org𝑥 :faculty↔ para𝑖”, will be

audited 1000 times at each epoch.

4.1 Secure Public Ledger
The secure public ledger techniques such as hash chain based and Merkle tree based approaches have been

studied in [34] and detailed research on formalization and security proof related to them have been provided in

[16]. However, it is not easy to adopt them in our proposed authority transparency framework. In our framework,

three types of audit obligations need to be recorded separately (see Section 3.4).

The public ledger in our secure logging based framework inherits the data structure proposed in CONIKS [38].

Actually, the data structure combines the hash chain and the Merkle tree. The Merkle tree is used to store all

the identity bindings, while the hash chain is used to manage the roots of the tree that represent the history of

identity bindings. In our proposed approach, we replace the Merkle prefix tree by Merkle Patricia trie (MPT) in

the public ledger to accommodate the structural characteristics of the attribute information.

The MPT, adopted in Ethereum community [46], provides a cryptographically authenticated data structure that

can be used to store all key-value bindings with𝑂 (𝑙𝑜𝑔(𝑛)) efficiency for inserts and look-ups. Generally speaking,

MPT integrates the characteristics of Radix tree and Merkle tree. Merkle trees provide an efficient means to prove

the inclusion and absence of specific bindings, while the Radix trees support efficiently inserting and locating

specified bindings in the scenario where keys have a similar prefix. Hence, it helps in adaptively managing the

attribute identity bindings. For instance, the binding “au𝑎 :org𝑥 :faculty↔para𝑖” and “au𝑎 :org𝑥 :student↔ para𝑖+1”
have the same prefix on the key, i.e., attribute prefix “au𝑎 :org𝑥 :”. The values para𝑖 and para𝑖+1 will be organized
as neighbors in the MPT with similar paths.

ACM Trans. Internet Technol., Vol. 1, No. 1, Article . Publication date: March 2020.

14 • Runhua Xu and James Joshi

Algorithm 1: pseudocode of stage and commit function

1 initialize global staging hash maps𝑀𝑠𝑡𝑎𝑔,C := ∅ and𝑀𝑠𝑡𝑎𝑔,T := ∅;
2 function stage(S)
3 if type of S is C then return result of putting (S.𝑣, S) into𝑀𝑠𝑡𝑎𝑔,C ;

4 if type of S is T then return result of putting (S.𝑣, S) into𝑀𝑠𝑡𝑎𝑔,T ;

5 function commit(S′C)
6 if S′C .𝑣 in𝑀𝑠𝑡𝑎𝑔,C and S′C .𝑣 in𝑀𝑠𝑡𝑎𝑔,T then

7 SC :=𝑀𝑠𝑡𝑎𝑔,C [S
′
C .𝑣]; ST :=𝑀𝑠𝑡𝑎𝑔,T [S

′
C .𝑣];

8 if S′C == ST and pair-validation(SC, ST) then
9 DLC.appendLog(SC, ST); remove SC from𝑀𝑠𝑡𝑎𝑔,C ; remove ST from𝑀𝑠𝑡𝑎𝑔,T ; return true;

10 return false;

11 function pair-validation(S𝑟𝑒𝑞, S𝑟𝑒𝑠𝑝)
12 if S𝑟𝑒𝑞 .𝑖𝑑𝑠𝑜𝑢𝑟𝑐𝑒 != S𝑟𝑒𝑠𝑝 .𝑖𝑑𝑡𝑎𝑟𝑔𝑒𝑡 or S𝑟𝑒𝑞 .𝑖𝑑𝑡𝑎𝑟𝑔𝑒𝑡 != S𝑟𝑒𝑠𝑝 .𝑖𝑑𝑠𝑜𝑢𝑟𝑐𝑒 then return false;

13 if S𝑟𝑒𝑞 .𝑡 >= S𝑟𝑒𝑠𝑝 .𝑡 or S𝑟𝑒𝑠𝑝 .𝑡 − S𝑟𝑒𝑞 .𝑡 >= Δ𝑡 then return false;

14 return true

4.2 KSAO Commitment
Note that a key service audit obligation consists of pairs of request and response key service snapshots that are

generated by a client and the TPA, respectively. The logger cannot record a KSAO element to the public ledger

in one-round of interaction; hence, we design a three-phase commit mechanism to record a complete KSAO

element, as depicted in Fig. 6. Generally speaking, we design three statuses, namely: initial, staging, commit, for

each key service snapshot
1
. The status of newly created key service snapshot is initial status. The status of a

snapshot that has been sent to the logger from clients/TPAs will change to staging status. The logger maintains a

temporary storage and manage the staging snapshots, and confirms a complete KSAO element to record into the

public ledger.

Here, we present the algorithms of stage and commit as shown in Algorithm 1 that is formalized in protocol

Log
T,L,C
O𝑘𝑠 (see Section 3.4.1). It is run by the logger to show how to form the key service audit obligations and

commit them to the public ledger. The algorithms maintain two global hash maps (namely, the staging area),

take the key service snapshots they receive as input and output a result indicating whether or not the operation

has succeeded. Specifically, the algorithm first initializes two empty global hash maps that are used to store the

staging key service snapshots received from the client and the authority (line 1). In our design, the request and

response key service snapshots have the same “key” in the key-value based staging area, where the “key” is

derived from the set of attribute identities and the protocol execution indicator. The stage function identifies the

type of key service snapshot and stores it to the corresponding staging area temporarily (lines 2-4). The commit

function first needs to confirm that both the request and response key service snapshots are in the staging area

(lines 5-7). Then it checks whether or not the received S′C is the same as ST ; this is to verify that the authority

does provide the key service rather than just generate the key service snapshot. Finally, the commit function

does the validation for a pair of request and response key service snapshots and adds a KSAO to the log (lines

8-9). The validation function is presented in lines 11-14 according to constraints mentioned in Definition 3.9.

Hierarchical Storage. Compared to PPAO elements, the storage for KSAO elements grows rapidly; hence, one

Merkle-Patricia trie is not adequate. To store the KSAO elements, we adopt a hierarchical Merkle tree to manage

1
The notion of staging comes from Git system [14]. The Git system uses staging area to store information about what will go into your next

commit.

ACM Trans. Internet Technol., Vol. 1, No. 1, Article . Publication date: March 2020.

Trustworthy and Transparent Third Party Authority • 15

data, namely, a parent tree with several trees as its children. Specifically, a child tree only stores one user’s related

KSAO elements, while the leaf node of the parent tree stores the root of a child tree.

5 DISCUSSION AND EVALUATION

5.1 Security Proof of Authority Transparency
Security Guarantee. We define security for the authority transparency in terms of three properties: (i) log-

consistency, which denotes that a dishonest log serverL cannot remain undetected if it tries to present inconsistent

versions of the log to the client, namely, auditor and monitor components; (ii) unforgeable-service, which says that

a dishonest authority T cannot forge a key service by sending valid key service snapshots, but not really provide

the key service to C; (iii) non-fabrication, which ensures that a dishonest authority T or a client C cannot blame

L for misbehavior if it has behaved honestly, and a dishonest client C cannot reprove T for misbehavior if it has

behaved honestly.

In general, the log-consistency property relies on the security properties of the primitive, namely, the dynamic

list commitment. The Unforgeable-service property follows from the three-phase commits with components that

include proof of key service work. The Non-fabrication depends on the unforgeability of the signature scheme

and the security property of DLC such as proof of non-inclusion. Theorem 5.1 generalizes the security guarantee

as follows:

Theorem 5.1. If the primitive DLC is secure, the hash function is collision-resistant and the signature scheme is

unforgeable, then the protocols in Definition 3.10 comprise a secure authority transparency.

Analysis Methodology. Our security proof is a game simulation based reduction proof. Suppose that the

adversary has non-negligible advantage 𝜖 to break the protocol. Then we reduce the game simulator to break the

security assumption by the adversary’s ability with advantage 𝜖 , which leads to a contradiction. As a result, the

adversary does not have such a non-negligible advantage.

Proof. As mentioned in Theorem 5.1, we have the following three assumptions: (i) the primitive DLC is secure;

(ii) the hash function is collision-resistant; (iii) the signature scheme is unforgeable.

The security proof of DLC primitive was presented in [16]. The collision-resistance of hash function and

unforgeability of signature scheme depend on the respective security proofs of the particular schemes that are

chosen in the deployment phase of the authority transparency framework. We now focus on the three security

properties mentioned earlier, namely, log-consistency, unforgeable-service and non-fabrication. We do not analyze

all protocols as shown in Fig. 5 here, as some of protocols are similar or straight-forward modifications of those

presented in [16, 21]. We refer the authors to those early work for the proof sketch. Here, we only focus on the

security proof of the newly proposed three-party log protocol, namely, Log
C,L,T
O𝑘𝑠 .

Log-consistency. Our authority transparency adopts the DLC primitive from transparency overlay[16], and we

do not change the Inspect and Gossip protocols compared to those used in the transparency overlay scheme. Thus,

the security proof of log-consistency property is also similar to that provide in [16], hence, we do not present it

here.

Non-fabrication. In the protocol Log
C,L,T
O𝑘𝑠 , there are two possible fabrication cases:

(i) The adversary AC tries to blame T by sending SC to L but does not actually send the key request to T .
(ii) The adversary A {C,T} tries to blame L for misbehavior even when it has behaved honestly.

Suppose that the adversaryA has the non-negligible advantage 𝜖 to break the non-fabrication security promise.

To achieve the fabrication case (i), the adversaryAC needs to forge a fake ST that includes a signature signed by

the private key of T . Thus, AC has the ability to forge a fake signature with advantage Adv
fabrication

AC ≥ 𝜖 . For

ACM Trans. Internet Technol., Vol. 1, No. 1, Article . Publication date: March 2020.

16 • Runhua Xu and James Joshi

fabrication case (ii), as depicted in the protocol, the receipt is formalized as (pkL, 𝑡, Sig(skL, (S, 𝑡))). To forge a

fake receipt, A {C,T} should also have a non-negligible advantage Adv
Sig

A{C,T} to forge the signature.

However, it is impossible to break the security assumption (iii), namely, the unforgeability of signature scheme,

according to the security assumption. Thus,A {C,T} andAC do not have non-negligible advantage 𝜖 to frame up

L and T in the protocol, respectively.

Unforgeable-service. In protocol Log
C,L,T
O𝑘𝑠 , there are two possible forgeable-service challenges:

(i) Adversary AT sends ST to L but does not send the key sk𝑎𝑡𝑡𝑟 to C;
(ii) AdversaryAT sends C an invalid key sk

′
𝑎𝑡𝑡𝑟 , but the “correct” ST derived from valid is actually key sk𝑎𝑡𝑡𝑟 ;

Suppose that adversary AT has the non-negligible advantage 𝜖 to break the unforgeable-service security

promise. For challenge (i), the third phase commitment (see Fig. 6) cannot be accomplished because of a failed

verification in the function GenKSS

′

C . For challenge (ii),AT has the ability to forge the proof of work component

𝜎 = ℎ𝐶𝑅𝐻𝐹 (·) with advantage Adv
forgeable-service,(𝑖𝑖)
AT ≥ 𝜖 . To achieve that, AT hence needs the ability to find

potential collision 𝜎 = ℎ𝐶𝑅𝐻𝐹 (·). According to security assumption (ii), it is impossible to break 𝜎 = ℎ𝐶𝑅𝐻𝐹 (·). As
a result, AT does not have non-negligible advantage Adv

forgeable-service,(𝑖𝑖)
AT ≥ 𝜖 to provide an unforgeable key

service without being detected.

□

5.2 Trustworthiness and Privacy Goals
5.2.1 Trustworthiness Goals. As we mentioned before, the purpose of authority transparency is dealing with

the trust issue in the TPA infrastructure in case of malicious insiders. Here, we present our analysis of how our

proposed authority transparency can prevent such attacks and hence establish trust in the TPA infrastructure.

Defense against Attack 1. The attack on public parameter distribution is actually a stealthy targeted attack [13].

Specifically, the malicious insiders distribute parameters such as tampered attribute identity key bindings to a

targeted entity without being detected, even though the targeted entity has a valid attribute identity.

In the proposed authority transparency approach, a TPA is required to publish its public parameters to the

public ledger through a secure logging system. The public ledger supports public audit; hence, each client can

request an audit proof to verify whether a specific content, e.g., attribute identity parameters that are related to its

user, is in the ledger or not. In the proposed framework, each client is also designed to monitor the consistency of

the ledger using a consistency proof. As the public ledger is append-only and cannot be tampered with, the client

can find misbehavior or malicious activities in public parameter distribution phase by comparing received public

parameters to the newest public ledger periodically. As a result, the TPA cannot distribute different parameters

related to the same attribute identity to data owner and data user without being detected. So the misbehavior or

malicious activities can be detected easily.

Defense against Attack 2. The attack on private key service is essentially a variant of DoS attack, called a censorship

attack [19]. To be specific, a malicious insider in the TPA infrastructure tries to treat a part of users differently,

e.g., refusing to provide key services, without being notified/detected by those users or all the users.

Note that clients and TPAs are required to send the request and response key service snapshots, respectively.

The proposed mechanism ensures that a pair of key service snapshots is recorded in the public ledger. If a TPA

does not fulfill its obligation of responding to key services by sending Sresp, there will be no corresponding

response record in the public ledger for Sreq that is sent by the client, and hence such incomplete Oks (i.e., the
snapshot pairing) will be detected by audit entities. As a result, the TPA’s censorship attack will be detected by

audit entities in the next epoch of public ledger.

5.2.2 Privacy Goals. Defense against Attacks 3. Even though the proposed authority transparency approach

tackles the trust issues related to the stealthy targeted attack (Attack 1) and the censorship attack (Attack 2), it

ACM Trans. Internet Technol., Vol. 1, No. 1, Article . Publication date: March 2020.

Trustworthy and Transparent Third Party Authority • 17

Table 1. Simulated settings

settings symbols data

#storage slots 𝑚 ≈ 2
32

#changes 𝑛 ≈ 2
25

#attr-identity 𝑥 ≈ 10

#collab-TPA 𝑦 ≈ 3

#epoch per day 𝑐 ≈ 24

Table 2. Client bandwidth cost based on settings in Table 1

#hashes transmission

audit(epoch) (𝑥 + 𝑦)𝑙𝑜𝑔2 (𝑚) + 1 1668 B

audit(day) 𝑐 ((𝑥 + 𝑦)𝑙𝑜𝑔2 (𝑚) + 1) 39.09 KB

monitor(epoch) 𝑙𝑜𝑔2 (𝑛) + 1 104 B

monitor(day) 𝑐 (𝑙𝑜𝑔2 (𝑛) + 1) 2.44 KB

also has privacy issue as we described in Attack 3. In the proposed privacy-preserving authority transparency, the

cryptographic hash function ensures that the component 𝑣 cannot be reversed by brute force attack because of

the hash key, even though the hash input set, namely, the set of attribute identities, is available to the adversary.

Thus, the key service snapshots will not disclose any privacy-sensitive information of the users.

5.3 Performance Analysis
Here, we present theoretical analysis on performance of our secure logging based framework with simulated

settings.

The underlying storage structure, i.e., Merkle Prefix Tree (MPT), in our implemented secure public ledger

for storing PPAO/KSAO elements is the same structure adopted in CONIKS [38], and hence we use the similar

evaluation parameters as shown in Table 1, i.e., parameters𝑚,𝑛, 𝑐 . Specifically, we suppose that the logger might

support𝑚 storage slots, namely, the number of leaf nodes in the MPT, to store elements of PPAO/KSAO. Besides,

we assume that there will be 𝑛 changes on bindings in each epoch, and there will be 𝑐 epochs for each day. Unlike

the settings in the CONIKS framework, the audit objects in our proposed authority transparency framework

include not only the public-key bindings as supported in CONIKS framework but also the private-key service

process. Such audit objects are related to the number of attribute identities and TPAs in our experimental crypto

scheme instance. Thus, we suppose that a user has 𝑥 attribute identities that come from 𝑦 TPAs, which decides

the number of elements of PPAO/KSAO.

5.3.1 Auditing and monitoring bandwidth cost. We analyze the theoretical bandwidth cost for each client based

on simulated settings described in Table 1. The results are presented in Table 2.

Auditing Cost. Suppose that a client needs to audit the attribute identity bindings related to its user. It might

download the current root of the tree, and a proof of inclusion for the authority/attribute identities. For each

identity binding, the proof of inclusion needs about 𝑙𝑜𝑔2 (𝑚) hashes. Thus, the estimated bandwidth size for a

client will be (𝑥 + 𝑦)𝑙𝑜𝑔2 (𝑚) + 1 hashes for each epoch. Suppose that the length of the hash value is 32 bit, the

total simulated transmission size is about 1668 bytes, as shown in Table 2.

We assume the attributes do not have the same prefix; this indicates that the leaf nodes that store identity

bindings do not have the same parent or ancestor nodes in the authentication paths in the Merkle tree. However,

the attribute identities of a particular user usually have the same prefix in the real scenarios, as shown in Example

3.2. Hence, the estimated bandwidth size presented in Table 1 is the upper bound of the interval.

Monitoring Cost. Suppose that a client needs to monitor the consistency of the bindings for each epoch, it might

download the root of the tree and the changes in the tree for each epoch. Suppose that there are 𝑛 changes in the

Merkle tree. For a specified authentication path in the tree, there will be 𝑙𝑜𝑔2 (𝑛) + 1 hashes in the changed set of

nodes. Thus, the estimated bandwidth size under the simulated setting will be 104 bytes in case of 32 bit hash

length.

Storage Size of KSAO. Compared to the public parameters distribution operation, the private key service request

is a higher frequency operation. Thus, the storage size of KSAO will grow rapidly. As we mentioned in Section

ACM Trans. Internet Technol., Vol. 1, No. 1, Article . Publication date: March 2020.

18 • Runhua Xu and James Joshi

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
#attribute in the policy

200

300

400

500

600

700

800

tim
e

(m
s)

Normal Setting
Authority Transparency Setting

(a) encryption phase

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
#attribute in request set

60

80

100

120

140

160

180

200

tim
e

(m
s)

Normal Setting
Authority Transparency Setting

(b) decryption phase

0.5 1.0 1.5 2.0
#attribute in universe set (k)

5

10

15

20

25

30

35

tim
e
(s
)

Normal Setting
Authority Transparency Setting

(c) initialization phase

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
#attribute in request set

40

50

60

70

80

90

100

tim
e
(m

s)

Normal Setting
Authority Transparency Setting

(d) key service phase

Fig. 7. The performance impacts of authority transparency setting on cryptography based access control scheme.

4, the storage used for KSAOs is a hierarchical Merkle tree, namely, each leaf node stores the root of another

Merkle tree. For a specific record in KSAO, the auditing cost and monitoring cost will be doubled compared to

the cost presented in Table 1.

5.3.2 Influence of Authority Transparency Setting. We implement a prototype of secure logging based framework

to evaluate the influence of introducing authority transparency into cryptography based access control schemes.

In particular, we compare the time cost with and without authority transparency setting for each of the phases of

a specific advanced cryptosystem instance.

The prototype of our proposed secure logging based authority transparency framework is implemented using

Python. The data interchange format between each entity is designed using protocol buffers that is Google’s

language-neutral, platform-neutral, extensible mechanism for serializing structured data. This framework can be

broadly deployed in heterogeneous environments as it is independent of specific crypto schemes Our framework

has no dependency on any specific advanced crypto schemes. The scheme is built on the Charm framework [3]

using wrappers to satisfy the interface in our authority transparency framework.

Here, we have used a typical cryptography-based access control scheme (i.e., CP-ABE [44]) as an instance for

our evaluation purpose, but we note that the results are generalizable to general crypto-based access control

scheme, including both CP-ABE schemes and KP-ABE schemes, where the TPA play the same role, namely,

setting up the public keys and providing private key service according to the provided identity components.

In secure computation schemes such as functional encryption (FE) cryptosystem, the TPA is engagged in the

similar process flow and interactions. The only minor difference there is the identity components such as the

attribute identity in the ABE and vector identity in the FE. Even though the method of generating public/private

keys of TPA in those cryptosystems is different, the process of authority transparency audit is similar. Thus, the

experimental evaluation here could be representative in those TPA-related advanced crypto schemes.

The experimental results are presented in Fig. 7. From the perspective of the client (on behalf of users), the

authority transparency setting does not add significant additional time needed in the encryption phase, as shown

in Fig. 7a, while it adds additional costs - on average 20 milliseconds - regardless of the number of attribute

identities, as shown in Fig. 7b. From the perspective of the authority, the authority transparency setting does not

increase additional time needed in the key service phase (Fig. 7d). In the system initialization phase, the authority

transparency setting adds extra average cost of 2 seconds, and in the worst case, it is less than 10 seconds, as

depicted in Fig. 7c. However, the initialization phase is only needed when new attribute identity sets are added,

hence, it will have no significant negative influence on user experience.

ACM Trans. Internet Technol., Vol. 1, No. 1, Article . Publication date: March 2020.

Trustworthy and Transparent Third Party Authority • 19

6 RELATED WORK
Advanced cryptography. The emerging advanced modern cryptography scheme refers to one that supports

both confidentiality and additional features such as access control [2, 15, 26, 37, 39] and secure computation

[8–10, 12, 20, 23, 25, 45]. For instance, the variant of ABE schemes [2, 7, 39] and ACE schemes [4, 30] have enabled

a public cloud to provide storage and management services for users’ sensitive data. Moreover, homomorphic

encryption family [8, 9, 12, 20, 25] allows one to compute arbitrary operations over outsourced encrypted data

without the decryption key, while in functional encryption family [10, 23, 45], the generated private key allows one

to learn a function result over a ciphertext without leaking the corresponding plaintext. Note that homomorphic

encryption based secure computation approach does not need a TPA, while functional encryption based secure

computation method relies on a TPA to help generate a functional private key for each function.

A TPA, as a critical component in advanced cryptography schemes, is responsible for setting up public

parameters and generating private keys. The recent research on TPA infrastructure only focuses on improving

efficiency by proposing multi-authority [15, 26] where several authorities are organized by hierarchical or

radial architecture, and decentralized-authority [37] where any party can become a TPA and become a part of a

collaborative group of TPAs. The collaborative TPAs enable or support applications where one party can share

data using attribute identities from different domains and organizations. However, the trust issues caused by

malicious insiders in the TPA infrastructure has not been investigated adequately.

Transparency. The concept of transparency in the digital world is used to avoid malicious activities or misbe-

havior in the critical infrastructures. Certificate transparency proposed in [32, 34] aims to mitigate the certificate

based threats caused by fake or forged SSL certificates that are mistakenly or maliciously issued by insiders.

Certificate transparency model creates an open framework for monitoring the TLS/SSL certificate system and

auditing specific TLS/SSL certificates. Then, several works related to certificate transparency were proposed in

[18, 21, 22, 33, 43] to deal with revocation, security and privacy issues.

Most recent and related work is CONIKS and transparency overlay. Melara et al. propose CONIKS in [38], which

deals with key transparency in end-to-end encrypted communications systems where the public keys of end

users are a general version of the digital certificate. Chase and Meiklejohn propose a formal framework called

transparency overlay with a specific security proof in [16]. However, such transparency model and framework

cannot deal with the trust and other issues we have addressed in this paper, e.g., how to ensure authorities’

fulfillment of obligations in key services phases.

7 CONCLUSION
Recently proposed advanced crypto schemes show huge promise for providing user-centric, secure data manage-

ment and processing in distributed environments such as clouds; however, the TPA infrastructure becomes an

obstacle for their wide spread and successful deployment because of possible trust issues caused by attacks such

as stealthy targeted and censorship attacks. In this paper, we have proposed a new concept of authority trans-

parency as a means to address these trust issues related to the TPA component. We have proposed an authority

transparency framework, including a formal model and an implementation approach, namely, a secure logging

based framework. Moreover, we have analyzed the framework to show that our proposed work achieves the

security goals. We also present theoretical performance evaluation and experimental results. As future direction,

we plan to address practical deployment, blockchain based implementation, efficiency of each collaborative TPA,

and develop ways to measure trustworthiness of the TPAs associated with various advanced crypto schemes.

REFERENCES
[1] Mohamed Hossam Afifi, Liang Zhou, Shantanu Chakrabartty, and Jian Ren. 2018. Dynamic authentication protocol using self-powered

timers for passive Internet of Things. IEEE Internet of Things Journal 5, 4 (2018), 2927–2935.

ACM Trans. Internet Technol., Vol. 1, No. 1, Article . Publication date: March 2020.

20 • Runhua Xu and James Joshi

[2] Shashank Agrawal and Melissa Chase. 2017. FAME: Fast Attribute-based Message Encryption. In Proceedings of the ACM SIGSAC CCS.

ACM, 665–682.

[3] Joseph A. Akinyele, Christina Garman, Ian Miers, Matthew W. Pagano, Michael Rushanan, Matthew Green, and Aviel D. Rubin. 2013.

Charm: a framework for rapidly prototyping cryptosystems. Journal of Cryptographic Engineering 3, 2 (2013), 111–128.

[4] Christian Badertscher, Christian Matt, and Ueli Maurer. 2017. Strengthening access control encryption. In ASIACRYPT. Springer,

502–532.

[5] David Basin, Cas Cremers, Tiffany Hyun-Jin Kim, Adrian Perrig, Ralf Sasse, and Pawel Szalachowski. 2018. Design, analysis, and

implementation of ARPKI: an attack-resilient public-key infrastructure. IEEE TDSC 15, 3 (2018), 393–408.

[6] Mihir Bellare and Sriram Keelveedhi. 2015. Interactive message-locked encryption and secure deduplication. In PKC. Springer, 516–538.

[7] John Bethencourt, Amit Sahai, and Brent Waters. 2007. Ciphertext-policy attribute-based encryption. In IEEE Symposium S&P. IEEE,

321–334.

[8] Dan Boneh, Rosario Gennaro, Steven Goldfeder, Aayush Jain, Sam Kim, Peter MR Rasmussen, and Amit Sahai. 2018. Threshold

cryptosystems from threshold fully homomorphic encryption. In Annual International Cryptology Conference. Springer, 565–596.

[9] Dan Boneh, Craig Gentry, Shai Halevi, Frank Wang, and David J Wu. 2013. Private database queries using somewhat homomorphic

encryption. In International Conference on Applied Cryptography and Network Security. Springer, 102–118.

[10] Dan Boneh, Amit Sahai, and Brent Waters. 2011. Functional encryption: Definitions and challenges. In TCC. Springer, 253–273.

[11] Kevin Borgolte, Tobias Fiebig, Shuang Hao, Christopher Kruegel, and Giovanni Vigna. 2018. Cloud strife: mitigating the security risks of

domain-validated certificates. In NDSS. Internet Society.

[12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. 2014. (Leveled) fully homomorphic encryption without bootstrapping. ACM

Transactions on Computation Theory (TOCT) 6, 3 (2014), 13.

[13] Aldo Cassola, William K Robertson, Engin Kirda, and Guevara Noubir. 2013. A Practical, Targeted, and Stealthy Attack Against WPA

Enterprise Authentication.. In NDSS. Internet Society.

[14] Scott Chacon and Ben Straub. 2014. Pro Git. Apress.

[15] Melissa Chase. 2007. Multi-authority attribute based encryption. In TCC. Springer, 515–534.

[16] Melissa Chase and Sarah Meiklejohn. 2016. Transparency Overlays and Applications. In Proceedings of the ACM SIGSAC CCS. ACM,

168–179.

[17] Jing Chen, Shixiong Yao, Quan Yuan, Kun He, Shouling Ji, and Ruiying Du. 2018. CertChain: Public and Efficient Certificate Audit Based

on Blockchain for TLS Connections. In IEEE INFOCOM. IEEE, 2060–2068.

[18] Laurent Chuat, Pawel Szalachowski, Adrian Perrig, Ben Laurie, and Eran Messeri. 2015. Efficient gossip protocols for verifying the

consistency of certificate logs. In CNS. IEEE, 415–423.

[19] Alberto Dainotti, Claudio Squarcella, Emile Aben, Kimberly C Claffy, Marco Chiesa, Michele Russo, and Antonio Pescapé. 2011. Analysis

of country-wide internet outages caused by censorship. In Proceedings of the ACM SIGCOMM IMC. ACM, 1–18.

[20] Ivan Damgård, Valerio Pastro, Nigel Smart, and Sarah Zakarias. 2012. Multiparty computation from somewhat homomorphic encryption.

In Annual Cryptology Conference. Springer, 643–662.

[21] Benjamin Dowling, Felix Günther, Udyani Herath, and Douglas Stebila. 2016. Secure logging schemes and Certificate Transparency. In

European Symposium on Research in Computer Security. Springer, 140–158.

[22] Saba Eskandarian, Eran Messeri, Joe Bonneau, and Dan Boneh. 2017. Certificate Transparency with Privacy. arXiv preprint

arXiv:1703.02209 (2017).

[23] Ben Fisch, Dhinakaran Vinayagamurthy, Dan Boneh, and Sergey Gorbunov. 2017. Iron: functional encryption using Intel SGX. In

Proceedings of the ACM SIGSAC CCS. ACM, 765–782.

[24] Oliver Gasser, Benjamin Hof, Max Helm, Maciej Korczynski, Ralph Holz, and Georg Carle. 2018. In Log We Trust: Revealing Poor

Security Practices with Certificate Transparency Logs and Internet Measurements. In PAM. Springer, 173–185.

[25] Craig Gentry, Amit Sahai, and Brent Waters. 2013. Homomorphic encryption from learning with errors: Conceptually-simpler,

asymptotically-faster, attribute-based. In Annual Cryptology Conference. Springer, 75–92.

[26] Nikita Gorasia, RR Srikanth, Nishant Doshi, and Jay Rupareliya. 2016. Improving Security in Multi Authority Attribute Based Encryption

with Fast Decryption. Procedia Computer Science 79 (2016), 632–639.

[27] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. 2015. Predicate encryption for circuits from LWE. In CRYPTO. Springer,

503–523.

[28] The Wall Street Journal. 2017. Yahoo Triples Estimate of Breached Accounts to 3 Billion. https://www.wsj.com/articles/

yahoo-triples-estimate-of-breached-accounts-to-3-billion-1507062804 Online; accessed 2018-1-19.

[29] Jonathan Katz, Amit Sahai, and Brent Waters. 2008. Predicate encryption supporting disjunctions, polynomial equations, and inner

products. In EUROCRYPT. Springer, 146–162.

[30] Sam Kim and David J Wu. 2017. Access control encryption for general policies from standard assumptions. In ASIACRYPT. Springer,

471–501.

ACM Trans. Internet Technol., Vol. 1, No. 1, Article . Publication date: March 2020.

https://www.wsj.com/articles/yahoo-triples-estimate-of-breached-accounts-to-3-billion-1507062804
https://www.wsj.com/articles/yahoo-triples-estimate-of-breached-accounts-to-3-billion-1507062804

Trustworthy and Transparent Third Party Authority • 21

[31] Deepak Kumar, Zhengping Wang, Matthew Hyder, Joseph Dickinson, Gabrielle Beck, David Adrian, Joshua Mason, Zakir Durumeric,

J Alex Halderman, and Michael Bailey. 2018. Tracking certificate misissuance in the wild. In IEEE Symposium S&P. IEEE, 785–798.

[32] Ben Laurie. 2014. Certificate transparency. Queue 12, 8 (2014), 10.

[33] Ben Laurie and Emilia Kasper. 2012. Revocation transparency. Google Research (2012).

[34] Ben Laurie, Adam Langley, and Emilia Kasper. 2013. Certificate transparency. Technical Report. IETF.

[35] Neal Leavitt. 2011. Internet security under attack: The undermining of digital certificates. Computer 44, 12 (2011), 17–20.

[36] Brian Neil Levine, Clay Shields, and N Boris Margolin. 2006. A survey of solutions to the sybil attack. University of Massachusetts

Amherst, Amherst, MA 7 (2006), 224.

[37] Allison Lewko and Brent Waters. 2011. Decentralizing attribute-based encryption. In EUROCRYPT. Springer, 568–588.

[38] Marcela S Melara, Aaron Blankstein, Joseph Bonneau, Edward W Felten, and Michael J Freedman. 2015. CONIKS: Bringing Key

Transparency to End Users.. In USENIX Security. 383–398.

[39] Yannis Rouselakis and Brent Waters. 2013. Practical constructions and new proof methods for large universe attribute-based encryption.

In Proceedings of the ACM SIGSAC CCS. ACM, 463–474.

[40] Mark Dermot Ryan. 2014. Enhanced Certificate Transparency and End-to-End Encrypted Mail.. In NDSS. Internet Society.

[41] Quirin Scheitle, Taejoong Chung, Jens Hiller, Oliver Gasser, Johannes Naab, Roland van Rijswijk-Deij, Oliver Hohlfeld, Ralph Holz,

Dave Choffnes, Alan Mislove, et al. 2018. A First Look at Certification Authority Authorization (CAA). ACM SIGCOMM Computer

Communication Review 48, 2 (2018), 10–23.

[42] Quirin Scheitle, Oliver Gasser, Theodor Nolte, Johanna Amann, Lexi Brent, Georg Carle, Ralph Holz, Thomas C Schmidt, and Matthias

Wählisch. 2018. The Rise of Certificate Transparency and Its Implications on the Internet Ecosystem. In Proceedings of the ACM

SIGCOMM IMC. ACM, 343–349.

[43] Linus Sjöström and Carl Nykvist. 2017. How Certificate Transparency Impact the Performance.

[44] Brent Waters. 2011. Ciphertext-policy attribute-based encryption: An expressive, efficient, and provably secure realization. In PKC.

Springer, 53–70.

[45] Brent Waters. 2012. Functional encryption for regular languages. In CRYPTO. Springer, 218–235.

[46] Ethereum Wiki. 2018. Merkle Patricia Trie Specification. https://github.com/ethereum/wiki/wiki/Patricia-Tree Online; accessed

2018-1-31.

[47] Jiangshan Yu, Mark Ryan, and Cas Cremers. 2018. Decim: Detecting endpoint compromise in messaging. IEEE TIFS 13, 1 (2018), 106–118.

[48] Liang Zhou, Sri Harsha Kondapalli, Kenji Aono, and Shantanu Chakrabartty. 2019. Desynchronization of Self-powered FN Tunneling

Timers for Trust Verification of IoT Supply-chain. IEEE Internet of Things Journal (2019).

A DYNAMIC LIST COMMITMENT
The primitive, dynamic list commitment (DLC), adopted in our paper is proposed in [16]. Here, we present brief

introduction. A DLC is a collection of the following algorithms:

• 𝑐 ← Commit(𝑙𝑖𝑠𝑡) creates the commitment 𝑐 and 0/1← CheckCommit(𝑐, 𝑙𝑖𝑠𝑡) checks that c is a commit-

ment to list;

• 𝑐𝑛𝑒𝑤 ← Append(𝑙𝑖𝑠𝑡Δ, 𝑐𝑜𝑙𝑑) updates the commitment to take into account the new elements in 𝑙𝑖𝑠𝑡Δ;

• 𝜋 ← ProveAppend(𝑐𝑜𝑙𝑑 , 𝑐𝑛𝑒𝑤, 𝑙𝑖𝑠𝑡) proves that 𝑐𝑛𝑒𝑤 was obtained from 𝑐𝑜𝑙𝑑 by appending elements 𝑙𝑖𝑠𝑡

and 0/1← CheckAppend(𝑐𝑜𝑙𝑑 , 𝑐𝑛𝑒𝑤, 𝑝𝑖) check this proof;

• 𝜋← ProveInList(𝑐, 𝑒𝑙𝑚𝑡, 𝑙𝑖𝑠𝑡) proves that 𝑒𝑙𝑚𝑡 is in 𝑙𝑖𝑠𝑡 as represented in 𝑐 and 0/1← CheckInList(𝑐, 𝑒𝑙𝑚𝑡, 𝜋)
checks this proof.

Note that the DLC allows someone to commit a list of elements with the following two promise: (i) the list

represented as the commitment can be updated only by having new elements appended to the end of the list,

and (ii) given the commitment, one can efficiently prove that the list is append-only and whether or not a given

element is in the list.

B PROTOCOL OF LOG AND CHECK
The detail of protocols Log

T,L
O𝑝𝑝 and Check

C.𝑎𝑢𝑑𝑖𝑡𝑜𝑟,L
O are presented in Fig. 8. Note that the two protocols are

derived from the the Log and CheckEntry protocol presented in transparency overlay. To adapt to our proposed

authority transparency model, we modified them to satisfy the requirements of authority transparency.

ACM Trans. Internet Technol., Vol. 1, No. 1, Article . Publication date: March 2020.

https://github.com/ethereum/wiki/wiki/Patricia-Tree

22 • Runhua Xu and James Joshi

Protocol LogT ,L
Opp

T(pkT ,skT) L(pkL,skL)

1 : [SOpp ← GenOpp (B)]

2 :
SOpp−−−−−−−−−−−−−−−−−−−−−−−−−−−→

3 : [Srcpt ← GenRcpt(SOpp)]

4 :
Srcpt←−−−−−−−−−−−−−−−−−−−−−−−−−−−

5 : [~bT ← CheckRcpt(Srcpt, SOpp)] [DLC.append(SOpp)]

6 : [return ~bT] [return ε]

1

Protocol Check
C.actor/auditor,L
O

C.actor/auditor(pk,sk)C L(pk,sk)L

1 : [bupdate ← SnapFreshness(O)]
. .

(if bupdate)

2 :
snapaudit−−−−−−−−−−−−−−−−−−−−−−−−−−−→

3 : [π ← DLC.ProveAppend(caudit, cL, S
O
L)]

4 : [snapL ← GenSnap(cL)]

5 :
snapL, π←−−−−−−−−−−−−−−−−−−−−−−−−−−−

6 : [UpdateSnap(snapL, π)]

(endif)

. .

7 :
O, snapaudit−−−−−−−−−−−−−−−−−−−−−−−−−−−→

8 : [π
′ ← DLC.ProveInList(caudit,O, SO

L)]

9 :
π

′

←−−−−−−−−−−−−−−−−−−−−−−−−−−−
10 : [baudit ← Finalize(caudit,O, π

′
)]

11 : [return baudit] [return ε]

1

Fig. 8. The LogT,LO𝑝𝑝 protocol and the CheckC.𝑎𝑐𝑡𝑜𝑟/𝑎𝑢𝑑𝑖𝑡𝑜𝑟,LO protocol in the authority transparency.

B.1 The protocol of Log

Log
T,L
O𝑝𝑝 is an interactive protocol between T and L that is used to record public parameter audit obligation O𝑝𝑝

into the public log represented as a commitments DLC, as depicted in Fig. 8 left column.

The protocol of Log
T,L
O𝑝𝑝 is simpler than protocol Log

T,L,C
O𝑘𝑠 . The authority first prepares a set of public parameter

audit obligations and sends them to the log server (lines 1-2). Then, the log server generates the receipts for each

audit obligation and sends back the receipts (lines 3-4). Finally, the authority verifies the receipts, while the log

server store the audit obligations by the append function of the DLC primitive. The operations for each entity in

the protocol Log
T,L
O𝑝𝑝 are presented in Fig. 9 left column.

B.2 The protocol of Check

Check
C.𝑎𝑐𝑡𝑜𝑟/𝑎𝑢𝑑𝑖𝑡𝑜𝑟,L
O is an interactive protocol between L, C.𝑎𝑐𝑡𝑜𝑟 and C.𝑎𝑢𝑑𝑖𝑡𝑜𝑟 that is used to check whether

or not an audit obligation O is in the log represented as a commitment DLC. As we integrate the role of actor and

auditor into one role client, we have two entity in the protocol, as depicted in Fig. 8 right column.

The protocol first checks the freshness of the local snapshot of the DLC commitment by comparing the

timestamp between the snapshot and the receipt of audit obligation that needs to be checked (line 1). If the

snapshot is out of date, the protocol updates local snapshot snap
audit

to a new snapshot snapL from the log server

with append-only proof 𝜋 (lines 2-5). Then, the client sends the audit obligation O with its snapshot snap
audit

to acquire the proof 𝜋
′
that proved O is in the commitment (lines 8-9). Finally, the client verify the proof 𝜋

′
to

check whether or not it is a valid proof. Otherwise, the client will record O into a suspicious set that is used for

gossiping with other clients. The operations for each entity in the protocol Check
C.𝑎𝑐𝑡𝑜𝑟/𝑎𝑢𝑑𝑖𝑡𝑜𝑟,L
O are presented

in Fig. 9 right column.

ACM Trans. Internet Technol., Vol. 1, No. 1, Article . Publication date: March 2020.

Trustworthy and Transparent Third Party Authority • 23

GenOpp
(SB)

SOpp ←{∅}
foreach B in SB do

Opp ← (B, Sig(skT ,B))
SOpp ← SOpp ||Opp

endfor

return Opp

GenRcpt(SOpp
)

Srcpt ←{∅}
foreach Opp in SOpp do

Srcpt ← Srcpt||(pkL, t, Sig(skL, (t,Opp)))

endfor

return Srcpt

CheckRcpt(Srcpt, SOpp
)

~b← false

for i = 1...length(Srcpt) do

rcpt← Srcpt[i]

Opp ← SOpp [i]

b[i]← Vf(pkL,Sig(skT , (rcpt[t],Opp)), rcpt[Sig])

endfor

return ~b

1

SnapFreshness(O)

rcpt← Srcpt[O]
if rcpt[t] > tauditor then return true

else return false

GenSnap(c)

t← timenow

return (c, t, Sig(skL, (c, t)))

CheckSnap(snap)

return Vf(pkL, (snap[c], snap[t]), snap[Sig])

UpdateSnap(snapL, π)

b← CheckSnap(snapL)

b
′ ← DLC.CheckAppend(caudit, cL, π)

if b ∧ b′ then snapaudit ← snapL
else return false

Finalize(caudit,O, π
′
)

b← DLC.CheckInList(caudit,O, π
′
)

if b = 0 then

SO,suspicious ← SO,suspicious||(O, rcpt)
return false

else

return true

1

Fig. 9. The operations for each entity in the LogT,LO𝑝𝑝 protocol and CheckC.𝑎𝑐𝑡𝑜𝑟/𝑎𝑢𝑑𝑖𝑡𝑜𝑟,LO protocol.

ACM Trans. Internet Technol., Vol. 1, No. 1, Article . Publication date: March 2020.

	Abstract
	1 Introduction
	2 Motivation
	3 Authority Transparency
	3.1 Notation and Terminology
	3.2 Attacks and Adversary Model
	3.3 Overview of Authority Transparency
	3.4 Model of Authority Transparency
	3.5 Privacy-Preserving Authority Transparency

	4 Secure Logging based Framework
	4.1 Secure Public Ledger
	4.2 KSAO Commitment

	5 Discussion and Evaluation
	5.1 Security Proof of Authority Transparency
	5.2 Trustworthiness and Privacy Goals
	5.3 Performance Analysis

	6 Related Work
	7 Conclusion
	References
	A Dynamic List Commitment
	B Protocol of Log and Check
	B.1 The protocol of Log
	B.2 The protocol of Check

