Revisiting Secure Computation using Functional Encryption: Opportunities and Research Directions

Runhua Xu⁺ and James Joshi^{*}

* AI Security and Privacy, IBM Research – Almaden Research Center
 * University of Pittsburgh & NSF #

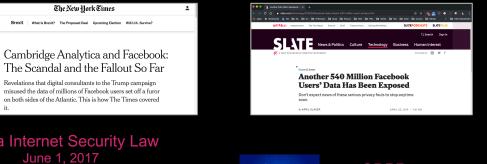
#This work was performed while James Joshi was serving as a Program Director at NSF; the work represents the authors' views and not that of NSF's.

Background Privacy-Preserving Data Processing

Data

Algorithm

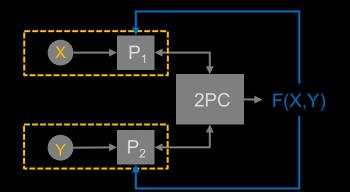
March 21, 2020



Brexit

Computing

Background Secure Computation

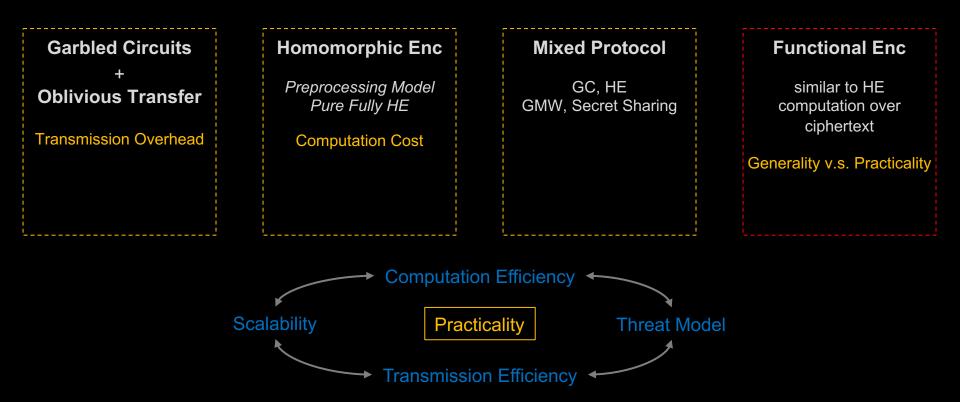


Secure Multi-party Computation (SMC) Multi-Party Computation (MPC) Secure Function Evaluation (SFE)

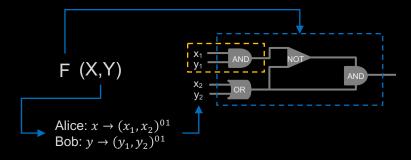
Secure Two-party Computation (2PC) Andrew Yao 1980s "Protocols for secure computation" "How to generate and exchange secrets"

APPLICATION secure search secure auction privacy-preserving biometric authentication privacy-preserving machine learning

Secure Computation Typical Approaches and Techniques Stack



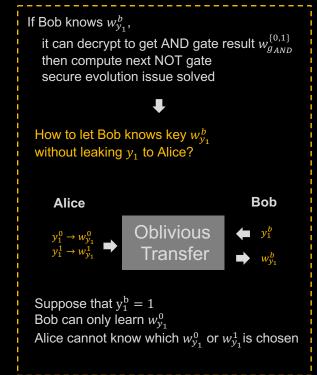
Existing Secure Computation Generic SMC using Garbled Circuits



Alice

AND - Truth Table			Keys	Encrypted Truth Table					Garbled Table
X 1	y 1	AND		X 1	y 1	AND	Encrypted		Garbled Circuit
0	0	0	$\begin{array}{c} x_1^0 \to w_{x_1}^0 \\ x_1^1 \to w_{x_1}^1 \end{array}$	0	0	0	$E_{w^0_{x_1}}(E_{w^0_{y_1}}(w^0_{g_{AND}}))$		$E_{w_{x_1}^0}(E_{w_{y_1}^0}(w_{g_{AND}}^0))$
0	1	0	$\Rightarrow y_1^0 \to w_{y_1}^{0} \Rightarrow$	0	1	0	$E_{w_{x_1}^0}(E_{w_{y_1}^1}(w_{g_{AND}}^0))$		$E_{w_{x_1}^1}(E_{w_{y_1}^1}(w_{g_{AND}}^1))$
1	0	0	$y_1^1 \to w_{y_1}^1$ $g_{AND}^0 \to w_{g_{AND}}^0$	1	0	0	$E_{w_{x_1}^1}(E_{w_{y_1}^0}(w_{g_{AND}}^0))$		$E_{w_{\chi_1}^1}(E_{w_{\chi_1}^0}(w_{g_{AND}}^0))$
1	1	1	$g^1_{AND} o w^1_{g_{AND}}$	1	1	1	$E_{w_{x_1}^1}(E_{w_{y_1}^1}(w_{g_{AND}}^1))$		$E_{w_{x_1}^0}(E_{w_{y_1}^1}(w_{g_{AND}}^0))$
Alice	e sen	ds $w_{x_1}^b$ ($b \in \{0,1\}$ based on v	alue o	of x_1)			C	

Bob



Existing Secure Computation SMC Derived from Homomorphic Encryption

General description of homomorphic encryption

```
 \begin{aligned} pk, sk &\leftarrow KGen(1^{\lambda}) \\ C_{HE} &\leftarrow \{Enc_{pk}(m_1), \dots, Enc_{pk}(m_n)\} \\ & C_{HE}^f \leftarrow Eval_{pk}(f, C_{HE}) \\ f(m_1, \dots, m_n) \leftarrow Dec_{sk}(C_{HE}^f) \end{aligned}
```

Types

- partially HE: one type of gate, e.g., addition or multiplication
- somewhat HE: two types of gates, but only for subset of circuits
- leveled fully HE: arbitrary circuits of bounded (pre-determined) depth
- fully HE: arbitrary circuits of unbounded depth

Preprocessing model approach

- Offline Process:
 - trusted dealer: provides raw materials for the computation (somewhat HE)
- Online Process:
 - use only inexpensive primitives to evaluate a function

Pure fully HE approach

- Directly adopt the fully HE
 - each party encrypt their input
 - all party perform a distributed decryption on C_{HE}^{f}

Existing Secure Computation Achieving MC in Mixed-Manner

General Idea: evaluate operations according to their best efficient representations

- additions and multiplications
 - has efficient representation as an arithmetic circuit
 - use HE approach
- comparison operations
 - has efficient representation as a Boolean circuit
 - use GC+OT approach

Typical Proposals

- TASTY framework
 - compiler a function using HE, GC, OT, etc.
- ABY framework
 - arithmetic sharing + boolean sharing + garbled circuits
- ABY³ framework
 - ABY in the three-party setting for privacy-preserving ML
- Chameleon framework
 - ABY with a semi-honest third-party for preprocessing arithmetic triples
 - previously, OT used
 - Can handle signed fixed-point numbers

General description of Functional Encryption

 $\begin{aligned} pk, msk \leftarrow Setup(1^{\lambda}) \\ dk_f \leftarrow KGen(msk) \\ C_{FE} \leftarrow \{Enc_{pk}(m_1), \dots, Enc_{pk}(m_n)\} \\ f(m_1, \dots, m_n) \leftarrow Dec_{dk_f}(C_{HE}^f) \end{aligned}$

General Functional Encryption

Decryption party is allowed to request a functional private key

$$D_{dk_f}(E_{pk}(m_1, \dots, m_n)) = f(m_1, \dots, m_n)$$
 without leaking m_1, \dots, m_n to decryption party

Functional Encryption for specific functionality: FE for Inner-Product

Where the allowed function is inner-product functions: Single Input Functional Encryption for Inner-Product

$$f_{S}(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{n} x_{i} y_{i} \quad s. t. |\mathbf{x}| = |\mathbf{y}| = n$$

r is from one since

x is from one single party, y is from the decryption party

$$f_M((\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n), \mathbf{y}) = \sum_{i=1}^n \sum_{j=1}^{\eta_i} (x_{ij} y_{\sum_{k=1}^{i-1} \eta_k + j}) \quad s. t. |\mathbf{x}_i| = \eta_i, |\mathbf{y}| = \sum_{i=1}^n \eta_i$$

Al Security and Privacy / SMC-FE-Vision / December 3, 2020

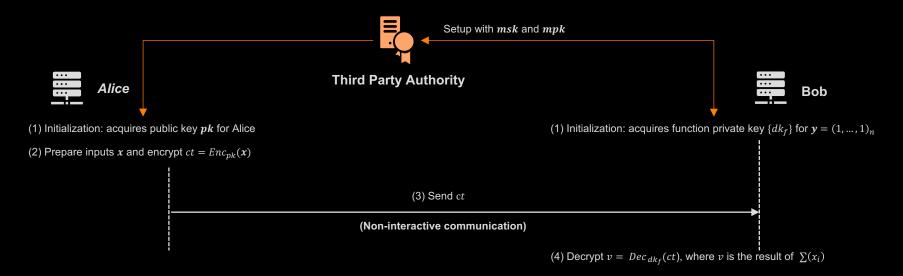
$$pk, sk \leftarrow KGen(1^{\lambda})$$

$$C_{HE} \leftarrow \{Enc_{pk}(m_1), \dots, Enc_{pk}(m_n)\}$$

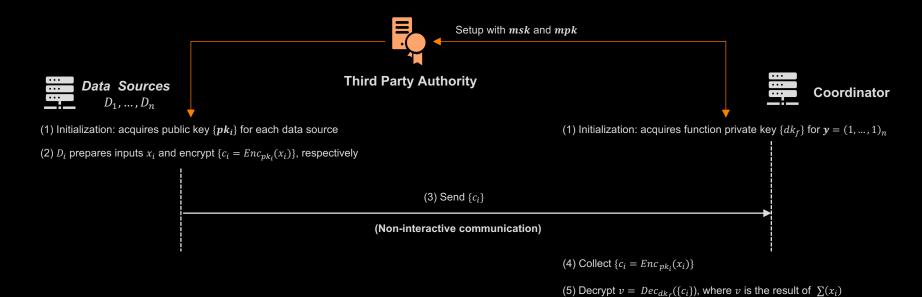
$$C_{HE}^f \leftarrow Eval_{pk}(f, C_{HE})$$

$$f(m_1, \dots, m_n) \leftarrow Dec_{sk}(C_{HE}^f)$$

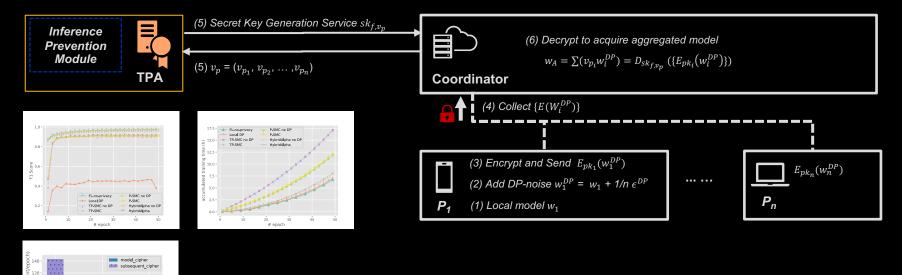
Secure Two-Party Computation using single-input functional encryption



Secure Multi-Party Computation using multi-input functional encryption



Application: FE-based SC in Privacy-Preserving Federated Learning



Runhua Xu, Nathalie Baracaldo, Yi Zhou, Ali Anwar, and Heiko Ludwig. Hybridalpha: An efficient approach for privacy-preserving federated learning.

In Proceedings of the 12th ACM Workshop on Artificial Intelligence and Security, pages 13–23, 2019a

Al Security and Privacy / SMC-FE-Vision / December 3, 2020

D SMC E

40 -

20

TP-SMC F

Secure Computation FE Approach: Challenges and Directions

Enriching Functionality

Success in FE-based SC in PPFL and PPDL applications (Inner-Product based FE)

Lack of FE-based SC for more functionalities Comparison Max/Min Degree-n Polynomial Computation

Enhancing Security and Privacy Guarantees

Selective indistinguishability under chosen plaintext attack (IND-CPA) decisional Diffie-Hellman assumption (DDH)

FE-based SMC honest-but-curious coordinator Against an adversary using quantum computing

Increasing Efficiency

Primary Objective in SC

FE-based SC is efficient than HE-based SC for some functionalities a challenge in large-scale secure computation scenario

Dynamic, Decentralized, and Threshold Setting

Existing FE-based SC in PPFL/PPDL (a third-party authority - TPA)

How about removing requirement of TPA? How about supporting dynamic parties? How about supporting threshold setting?

Secure Computation FE Approach: Challenges and Directions

Privacy-Preserving Applications

FE-based PP Federated Learning (horizontal FL) FE-based PP Deep Learning (CNN model)

How about PPFL in vertical setting? How about PPDL in more types of model? (RNN, Transformer, Decision Tree, XGboost)

Realization and Open-Source Library

HE-based SC open-source libraries IBM Research – HElib Microsoft Research – SEAL

a need to establish open-source practical FE libraries

Transparent and Accountable Crypto Infrastructure

Existing FE-based SC in PPFL/PPDL (a third-party authority – TPA – Critical Infrastructure)

Certificate Authority – Certificate Transparency TPA – Authority Transparency Accountable FE-based SMC (coordinator)

Benchmarks

FE-based SC is a nascent research area

needs benchmarks to help broader researchers from other communities to identify FE-based SC solutions.

Thanks

Q&A