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Abstract—The emerging edge computing paradigm has en-
abled applications having low response time requirements to
meet the quality of service needs of applications by moving the
computations to the edge of the network that is geographically
closer to the end-users and end-devices. Despite the low latency
advantages provided by the edge computing model, there are
significant privacy risks associated with the adoption of edge
computing services for applications dealing with sensitive data.
In contrast to cloud data centers where system infrastructures are
managed through strict and regularized policies, edge computing
nodes are scattered geographically and may not have the same
degree of regulatory and monitoring oversight. This can lead
to higher privacy risks for the data processed and stored at
the edge nodes, thus making them less trusted. In this paper,
we show that a direct application of traditional performance-
based query optimization techniques in edge computing can
lead to unexpected data disclosure risks at the edge nodes.
We propose a new privacy-preserving latency-aware query op-
timization framework, QueryGuard, that simultaneously tackles
the privacy-aware distributed query processing problem while
optimizing the queries for latency. Our experimental evaluation
demonstrates that QueryGuard achieves better performance in
terms of execution time and memory usage than conventional
distributed query optimization techniques while also enforcing
the required constraints related to data privacy.

Index Terms—query optimization; data privacy; latency
awareness; edge computing; database management

I. INTRODUCTION

The emerging edge computing paradigm has enabled appli-
cations having low response time requirements to meet quality
of service needs of applications by moving computations to the
edge of the network that is geographically closer to the end-
users and end-devices [1]–[3]. A key distinguishing feature
of edge computing is its ability to store and process large
amounts of data on servers and computing units located closer
to the data sources such as sensors and mobile devices. This
enables it to provide low latency services for highly interactive
applications. For instance, augmented reality applications with
real-time computation requirements can be deployed as an
edge computing application to meet the response time require-
ments. In a highly distributed data processing environment
such as those in the Internet-of-things (IoT), edge computing
provides a natural solution to deal with the decentralized and
low-latency computation of data generated in the IoT devices.

Distributed database management approaches offer an effi-
cient ways to manage and process large amounts of decen-
tralized data for data-driven applications [4]–[11]. However,

adopting distributed database techniques in edge computing
brings new challenges and concerns. First, in contrast to
cloud data centers where cloud servers are managed through
strict and regularized policies, edge nodes may not have the
same degree of regulatory and monitoring oversight. This
may lead to higher privacy risks compared to that in cloud
servers. In particular, when dealing with a join query, tra-
ditional distributed query processing techniques sometimes
ship selected or projected data to different nodes, some of
which may be untrusted or semi-trusted. Thus, such techniques
may lead to greater disclosure of private information within
the edge nodes. Traditional query processing techniques in
the distributed environments aim at optimizing the queries
in terms of using the most efficient query plan and do not
focus on addressing the privacy concerns in distributed settings
[5], [6], [8]–[11]. Although cryptography based solutions have
been adopted in database systems in [12], [13], such schemes
either incur a significant computation cost for implementing
the crypto operations or require the use of trusted third party
to support the operation [4], [7]. Secondly, as edge computing
nodes are scattered geographically with varying degrees of net-
work connectivity in terms of network bandwidth and latency,
optimizing distributed query processing in edge computing
requires a special emphasis on network latency compared to
that in traditional query processing where the emphasis is
primarily on minimizing the query computation time.

In this paper, we propose QueryGuard, a privacy-
preserving, latency-aware query optimization framework, to
tackle the challenges of join query optimization in an edge
computing environment. Our proposed work deals with both
the privacy concerns as well as latency optimization for
distributed join query processing in edge computing environ-
ments. The proposed query optimization mechanism generates
optimal query execution plans that ensure users’ privacy
preferences on their sensitive data stored in edge nodes during
the query execution phase. In particular, the mechanism auto-
matically controls the movement of sensitive data in a cross-
site join operation so as to avoid the sensitive data being stored
or disclosed to an untrustworthy node in the decentralized
computing infrastructure. The proposed query optimization
framework also optimizes for the latency of the join queries
by dynamically considering the network characteristics of the
edge computing environment. We experimentally evaluate the



performance of the proposed query optimization techniques
and the results demonstrate that the proposed methods achieve
better performance in terms of execution time and memory
usage compared to conventional distributed query optimization
techniques while also enforcing the privacy constraints.

II. BACKGROUND AND MOTIVATION

Edge computing refers to computing infrastructures that
enable computations and data processing tasks to be performed
at the edges of the network, closer to the data sources, allowing
low latency applications to meet their short response time
requirements [2]. Fig.1 illustrates an example where several
edge nodes are distributed at the edge of the Internet. This
helps provide storage and computing services for IoT sensors
closer to the edge of the network.

A join query t1, s1, s2 may be requested from a mobile
application at the edge node E5. As there exists multiple
query plans for this join query, the query optimizer chooses the
optimal query plan that minimizes the query execution time.
For instance, there are three possible join query statements for
the query: t1 ./ s1 ./ s2, t1 ./ s2 ./ s1, and s1 ./ s2 ./ t1,
based on the the order of the join operation. For each query,
several query execution plan candidates can be generated from
the query statement based on different permutations of the
join order, projection, and selection operations. In an edge
computing environment, each query plan incurs a different
query processing and latency cost as stream/relations are
stored and placed in different edge nodes.

A. Latency-aware Query Optimization
Even though traditional distributed query processing tech-

niques could be used to manage stream/relational data, they are
not directly suitable for applications that require low response
time such as real-time interactive applications and as a result,
such approaches yield a sub-optimal performance in edge com-
puting environments. Suppose that a mobile-based application
supporting audio-based walking guide is used by people who
are blind for navigation; when they are walking around, even
a small latency delay may result in a serious deviation from
the correct path. Such latency sensitive applications usually
have a higher requirement on latency optimization, which can
be supported by using an edge computing based approach.

As another example to illustrate the benefits of adopting
edge computing for applications requiring low latency query
processing, suppose that edge nodes E1, E2, E3 are located in
city A as shown in Fig.1. Let the distance between E1 and
E2, E2 and E3, and E1 and E3 be de1,e2 , de2,e3 and de1,e3
miles, respectively. Let the closest cloud data center B be da,b
miles away from city A. We consider the estimated network
traffic latency of each location as in Table I based on [14],

If a user located at E1 needs to perform a join query on
the stream data collected by sensors in the last t minutes, the
estimated performance results can be computed as shown in
Table II. Here, we compare the total estimated time using the
edge-based approach and cloud-based approach:

TABLE I
SIMULATED LOCATIONS AND THEIR NETWORK LATENCY

Location Distance Latency(ms) Result

E1 - E2 de1,e2 0.022 · de1,e2 + 4.862 te1,e2 =5.082
E2 - E3 de2,e3 0.022 · de2,e3 + 4.862 te2,e3 =5.202
E3 - E1 de3,e1 0.022 · de3,e1 + 4.862 te3,e1 =5.192
A - B da,b 0.022 · da,b + 4.862 ta,b =26.862

† Note that the latency of network traffic is estimated based on the
distance using a linear model: y = 0.022x+4.862 with coefficient
of determination (R2 = 0.907) proposed in [14].

‡ The distance between the data center and the city is assumed to be
1000 miles, while the distance between edge nodes is 10, 20, and
15 miles, respectively.

TABLE II
SIMULATED PARAMETER SETTINGS AND VALUES

Symbol Value Description

t 30 min Time interval of the query
ve1 1 KB/min Speed of stream data generating at edge E1

ve2 2 KB/min Speed of stream data generating at edge E2

ve3 3 KB/min Speed of stream data generating at edge E3

vnet 100 Mbit/s Ethernet speed
T 10 ms Query time in a single machine

(i) Edge-based approach. The total estimated time includes
the maximum time of shipping data from E2, E3 to E1

and the time of query processing in E1, as follows:

tedge = max
i∈{e2,e3},j∈{(e1,e2),(e1,e3)}

(vit/vnet + tj) + T ,

where vi represent the data generation speed and vj is
the latency time.

(ii) Cloud-based approach. The total estimated time includes
the maximum time of shipping data from E1, E2 and E3

to B, the time of query processing in B, and the time of
returning query results:

tcloud = max
i∈{e1,e2,e3}

(vit/vnet+ta,b)+T +
∑

vit/vnet+ta,b,

where vi represent the data generation speed.

As a result, the estimated query time of cloud-based approach
(tcloud) is about 84.818 ms, while the edge-based approach
(tedge) is about 22.223 ms using the values in Table II. This
indicates that the cloud-based approach incurs nearly 4 times
the cost of the edge-based approach.
B. Privacy-preserving Query Processing

Although edge computing provides significant advantages
in tackling latency issues for short response time applications,
it also brings new privacy challenges when deployed in dis-
tributed, semi-trusted computing environments. In contrast to
cloud data centers where cloud servers are managed through
strict and regularized policies, edge nodes may not have the
same degree of regulatory and monitoring oversight; hence,
edge nodes may lead to higher privacy risks compared to
cloud servers. In particular, when dealing with a join query,
traditional distributed query processing techniques may ship
selected or projected data to various trusted or semi-trusted
nodes, thus, increasing data privacy risks at the edge nodes. We
illustrate the problem more clearly using the example shown
in Fig.1 where E1, E2, E5 are marked as private edge nodes



Fig. 1. Illustration of query processing in an edge computing environment. Edge nodes are connected to each other and to the cloud to provide services for
a large number of IoT sensors. The stream s1, s2 and relation t1 are deployed in edge nodes E1, E4, E5, respectively. An example optimal query plan tree
for join query t1 ./ s2 ./ s1 is shown.

Fig. 2. Samples of query execution plan candidates. Note that the superscript
of nodes in the query plan tree represents the processing edge site, and RCV
denotes the receiving nodes in the data shipment.

for collecting and storing sensitive data such as location data
from vehicle sensors. E3, and E4 are marked as public edge
nodes where non-sensitive information such as climate and
traffic data are stored. In particular, the attributes attr3 in
stream s1 and attr2 in relation t1 are sensitive information.
The attributes attr4 in stream s2 and attr1 in relation t1 are
non-sensitive information. As depicted in Fig.1, a CQL [15]
query is requested. The candidate query execution plans based
on distributed edge sites are depicted in Fig.2. To execute
the query, the distributed database management system will
choose an optimal query plan based on cost estimation using
a query optimizer. We only illustrate four possible query
execution plan candidates that are chosen in the entire query
plan search space. The query plan candidates (c) and (d)
have privacy leakage risks as a result of shipping sensitive
information attr2 and attr3 to a public edge node E4, which
is indicated with red font and rectangle in Fig.2.
Privacy Disclosure Specification. Suppose if some of public
edge nodes, e.g., E4, may be controlled by the adversary who
tries to collect users’ private information, then even though
the adversary cannot control the private edge nodes where
sensitive data is stored, the adversary can still acquire these
sensitive data as part of the intermediate data transferred
during the join query execution. In this example, the query
plan candidate (c) and (d) may be chosen as the optimal
query plan if they have the lowest estimated cost. As a result,
the adversary at the public edge node E4 can acquire the
intermediate sensitive data even if he does not have access
to edge nodes where the sensitive data is stored. Here, the
key challenge is determining how to satisfy data privacy as

well as low latency processing requirements when generating
query execution plans such that both the objectives are met
simultaneously.
Privacy Model. The privacy model in our framework includes
two parts: (i) using privacy preference approach to control the
data shipment scope and (ii) using privacy privilege levels to
control the data shipment direction among the edge nodes.
Privacy Level. In the proposed model, each edge node is
assigned a privacy level. The privacy level of data can be
directly inferred from the privacy levels of edge nodes where
the data is stored. We assume that the default privacy level of
the data stored in the edge node is the node’s privacy level.
In addition, we employ a function to deal with the issue of
privacy level calculation when the sensitive data is allowed to
be stored in multiple edge nodes. After the initialization, each
edge node and the data stored in it will be assigned the same
privacy level. In our work, we ensure the no ship down in join
operation principle during query processing. In other words,
it is not allowed to ship either the input data or intermediate
data to an edge node where its privacy level is lower than the
privacy level of the data itself.
Privacy Preference. The data managed by edge nodes should
be assigned a privacy preference parameter to control the data
shipment scope in the edge computing environment. Users
may have preferred edge nodes to deal with their data, hence,
they have higher trustworthiness on such edge nodes. For
instance, suppose that community A and B have cooperative
relationship, while community A and C do not have such
relationship. Thus users from A have lower privacy leakage
concerns on edge nodes from B compared to edge nodes from
C. As a result, users from A may prefer their data processed
at edge nodes that belong to B instead of C to deal with their
privacy concerns. As the privacy preference is specified by
data owners, setting such preference is a subjective approach
to protect users’ private information.
Privacy Guarantee. Our privacy model can ensure that no
privacy-sensitive information is disclosed in the distributed
query processing phase in the edge computing environment.
That is, if an adversary controls a public edge node, it will



not infer any privacy-sensitive information from monitoring
the distributed query operations. Furthermore, even if the
adversary controls a private edge node with privacy level p,
it cannot infer any sensitive information with privacy level
higher than p.
Adversary. In our work, we assume two types of adversaries,
namely the public adversary and the private adversary. The
public adversary has complete control of public edge nodes
and can access any data stored in public edge nodes. Similarly,
the private adversary can access the private edge nodes belong-
ing to a specific privacy level. The public adversary has neither
access to private edge nodes nor communication channels
among the private edge nodes, while the private adversary can
access both public edge nodes and the communication chan-
nels between its controlled edge nodes and other edge nodes.
We also assume that a private adversary at a given privacy
level cannot obtain information in the edge nodes at a higher
privacy level. Here, the adversary can access any intermediate
data shipped to its controlled edge nodes during the query
plan execution phase, which is referred as the intermediate-
data inference attack. For instance, as shown in Fig.1, if an
adversary at site E4 wants to query public information attr1
and attr4 by performing join query on s2 and t1, even though
the query result does not disclose any sensitive information,
the adversary can analyze the intermediate data, namely the
joined table, to find sensitive attribute attr2.

III. QUERYGUARD FRAMEWORK

A. QueryGuard Formalization
Assumptions. As we focus on query optimization and stream
query processing [15] employing CQL as the query language
which supports direct stream-to-relation operation, we will
not differentiate stream data and relation data in our frame-
work unless necessary. Thus, we use RS to denote any
relation/stream in the rest of the paper. Also, in our work, we
only consider select-project-join (SPJ) queries, i.e., the query
involving selection, projection and join operations. We do not
consider the data slice and partition problems and hence the
relations or streams used in our work are not fragmented.

Let SRS be a set ofRS in the edge computing environment.
Let RSi denote an arbitrary relation or stream, where RSi ∈
SRS . We assume that we have a set of edge nodes, denoted
as Sedge and ej ∈ Sedge is an arbitrary edge server and for
each edge node, e.g., ej , it manages a set of RS, denoted as
SRS,ej , which indicates SRS,ej ⊆ SRS .

We next define the notations related to the privacy notion.
We assume that Lp represents a privacy level list with size
n, and px ∈ Lp denotes privacy level x. Each edge node is
assigned a privacy level, denoted as fpriv(ej) : ej 7→ px. The
privacy level list has the two following properties: (i) Lp is an
ordered list where sequence element with higher subscript in
the list has higher privacy level, and (ii) for each edge node
it can only belong to one privacy level. However, RS may
be stored in several edge nodes, denoted as DRS , at the same
time. In this case, the privacy level of RS is calculated as
fpriv(RS) := min ∀ej∈DRS fpriv(ej).

The privacy preservation requirement restricts that RS can
only be shipped among the edge nodes with the same privacy
level or the edge nodes with higher privacy level during
the query execution phase. We formalize two constraints
regarding users’ privacy namely privacy level constraint and
privacy preference constraint. The privacy level constraint
is an objective constraint that limits the shipment direction
of sensitive data according to privacy levels. The privacy
preference constraint is a subjective constraint that controls
the data shipment range based on data owner’s subjective
preference. The constraints are defined as follows:
Privacy Level Constraint. Let Cpl be a privacy level con-
straint that defines limitations of the shipment direction in the
query execution plan generation phase.

Cpl(RSi,RSj) := ei
ship−−−→ ej , s. t. fpriv(RSi) ≤ fpriv(RSj)

where RSi ∈ SRS,ei ,RSj ∈ SRS,ej .
Privacy Preference Constraint. Let Cpp be a privacy prefer-
ence constraint that defines shipment scope requirement in the
query plan generation phase.

Cpp(RSi,RSj) := ei
ship−−−→ ej , s. t. arg

e∈DRS

p(ei, ej) � λ

where RSi ∈ SRS,ei ,RSj ∈ SRS,ej , and λ is a threshold
assigned with RSi. p(ei, ej) is the preference shipment scope.

Our QueryGuard framework is formally described as fol-
lows:

Definition 1. QueryGuard Specification. Let SL be the set of
all query execution plans for a query Q and Lopt represents
the optimized query execution plan based on the latency-aware
cost measure method fcost(·).

Lopt := arg min
SL←Q,∀L∈SL

fcost(L) s.t. Cpl and Cpp

Note that Cpl and Cpp is related to the privacy-preserving
approaches to tackle the privacy constraints, while the latency-
aware approach is based on designing new cost model fcost(·).
The techniques to obtain these two components in the model
are the key contributions of this paper.

B. Preliminaries
The architecture of the edge query processor consists of a

parser, a re-writer, a query optimizer, a query executor and a
catalog [10]. We describe them next.
Catalog. The catalog stores all information that is needed to
parse, rewrite, and optimize a query [10]. For instance, the
catalog may include the schema regarding relations, indices,
and views. Other statistics and the current system state could
also be stored in the catalog. In the distributed setting, the cat-
alog also includes additional information such as the location,
replicas of relations, and the sites.
Cost Model. In order to find an optimal query plan, the query
optimizer employs a cost model that accurately estimates the
system resources used for each operator in the query. For
instance, selection, projection and join operations need to be



estimated by the cost model in a centralized database system.
When it comes to distributed edge query processing, the cost
estimation on join operators becomes more complex due to
varying network conditions and the connectivity between the
edge nodes. Even though some of plan candidates result in
the same results, the cost of these plans may vary by several
orders of magnitude.
Query Optimization. The query optimizer employs an enu-
meration algorithm to enumerate the entire search space.
Specifically, the main goal of the query optimization process is
to take an input query and produce a specific query execution
plan that guides the query executor how the query should be
executed. Here, the problem of finding the best plan is NP-
complete. Typically, there are three categories of enumeration
algorithm to deal with query optimization: exhaustive search,
heuristic-based search and randomized search [16]. The tra-
ditional dynamic programming enumeration algorithm is a
popular exhaustive search algorithm, which has been widely
used in a large number of commercial database management
systems. In our work, we combine the exhaustive search
approach and the heuristic-based approach to deal with the
query optimization. To be specific, we use traditional dynamic
programming enumeration algorithm as the skeleton with the
help of heuristic rules to prune unsatisfied branches.

C. QueryGuard Framework
We propose our QueryGuard framework in Algorithm 1

that is constructed using the skeleton of traditional dynamic
programming enumeration algorithm where the optimal plan is
generated by joining optimal sub-plans in a bottom-up manner.
In order to produce the best possible plans, we employ the
iterative dynamic programming approach that promises the
best plans compared to other algorithms even if dynamic
programming turns out to be not viable [11]. We incorporate
heuristic-based approaches in our algorithm which can guide
the search into several specified sub-plans in the entire search
space. Essentially, our proposed work can be considered as a
combination of dynamic programming exhaustive search and
heuristic-based search to achieve the optimal query plan.

When generating query plans by joining different sub-
plans in a bottom-up manner, we adopt the privacy-preserving
constraints as part of the heuristics to incorporate the privacy-
aware data processing constraints. The heuristics include both
privacy level constraint and privacy preference constraint pro-
posed in Section III-A. Any plan candidates that do not pass
the check under heuristic rules are pruned from the search
space immediately (see line 11). Finally, the network latency
measures are considered to prune the rest of plan candidates
to generate the final optimal query plan (see lines 12 and 19).
The specific implementation of the privacy join mechanism
and the latency aware mechanism is described in the next
section.

The critical phases in the QueryGuard framework is illus-
trated in Fig.3. Suppose that there are four RS assigned with
four privacy levels, which are deployed in eight edge nodes. In
traditional approaches, there are many possible join shipment

Algorithm 1: Pseudocode for QueryGuard framework
Input: A set of relations or streams R = {Ri} with size n generated

from a query Q
Output: The optimized query plan

1 for i = 1 to n do
2 plans({Ri}) := access-plans({Ri})
3 LATENCY-AWARE-PRUNE(plans({Ri}))
4 toDo := R
5 while |toDo| > 1 do
6 b := balanced-parameter(|toDo|, k)
7 for i = 2 to b do
8 forall S ⊂ R and |S| = i do
9 plans(S) := ∅

10 forall O ⊂ S and O 6= ∅ do
11 plans(S) := plans(S) ∪ PRIVACY-JOIN(plans(O),

plans(S \O))
12 LATENCY-AWARE-PRUNE(plans(S))

13 find P, V with P ∈ plans(V ), V ⊂ toDo, |V | = k such that
eval(P ) = min{eval(P

′
) |P ′ ∈ plans(W ),W ⊂ toDo, |W | = k}

14 generate new symbol: T , plans(T ) = {P}
15 toDo = toDo− V ∪ {T }
16 forall O ⊂ V do
17 delete(plans(O))

18 finalize-plans(plans(R))
19 LATENCY-AWARE-PRUNE(plans(R))
20 return plans(R)

candidates and the query optimization will try to choose the
join shipment with the lowest resource cost. In our proposed
QueryGuard framework, we limit the data shipment scope and
control the shipment direction due to privacy constraints. For
instance, E1, E5, E6 are in the same privacy preference scope
according to the specified threshold. As a result, the possible
join shipment candidates between E1 and E4 is pruned. In
addition, the shipment from E3 to E8 is also pruned due to the
violation of privacy level constraint. After this step, we adopt
our proposed dynamic latency-aware cost model to generate
the final optimal plan.

IV. QUERYGUARD QUERY PROCESSING TECHNIQUES

A. Privacy-preserving Query Optimization in QueryGuard
To tackle the privacy-aware query processing challenges

outlined in Section II, we propose a novel privacy-join
function in the QueryGuard framework (Algorithm 2). The
privacy-preserving join function avoids potential privacy infor-
mation leakage by generating privacy-preserving query plans.
The algorithm takes two sets of query plans that need to be
joined and returns possible privacy-preserving joined query
plans. To begin, the algorithm initializes a list that will be used
to store the join plan candidates (line 1). For each possible
edge site, it tries to create a new join-node based on a plan-pair
where two plans are selected from two sets of query plans in
an iterative manner, respectively (lines 3-13). Before creating
a new join-node, the plan candidates will be checked to see if
it violates the privacy constraints. If it violates, such potential
query plans will be pruned from the search space tree (lines
6-7 and lines 10-11); otherwise, the new join-node will be
created with assigned edge site (lines 12-13).



Fig. 3. An illustration of the critical phases in QueryGuard framework. Note that the symbol Ei, Sj represents an edge node Ei where relation/stream
data Sj stored. For simplicity, data Sj also implies privacy level PLj , where ∀x < y, PLx < PLy . Edge node E1, E5, E6 are supposed in one privacy
preference scope, while the rest of edge nodes are in another privacy preference scope.

Algorithm 2: Privacy-preserving join algorithm
1 function PRIVACY-JOIN(lplans, rplans)
2 join-plans := {∅} ;
3 foreach possible edge e do
4 for plan l in lplans do
5 if PREFERENCE-CONSTRAINT(l, e) then continue;
6 lpp := LEVEL-CONSTRAINT(l, e) ;
7 if lpp.flag then continue;
8 for plan r in rplans do
9 if PREFERENCE-CONSTRAINTE(r, e) then

continue;
10 rpp := LEVEL-CONSTRAINT(r, e) ;
11 if rpp.flag then continue;
12 join := new node(lpp.root, rpp.root, e) ;
13 join-plans.add(join) ;

14 return join-plans

15 function LEVEL-CONSTRAINT(p, e)
16 flag := false
17 if p.root.site 6= e then
18 if p.root.P > e.P then return (true, null) ;
19 else
20 rcv node :=new node(p.root, e)
21 set P of rcv node same to P of e.
22 p.root := rcv node

23 return (flag, p)

24 function PREFERENCE-CONSTRAINT(p, e)
25 foreach leaf node in p do
26 λ := transmission threshold of leaf node
27 if λ is Set type then
28 if e /∈ λ then return true;

29 return false

Note that only the root of a plan is assigned a possible edge
site at any time due to our framework’s bottom-up construction
when building the query plans. The newly created join-node
is the root of two previously generated query plans’ roots that
already have edge site assignment.

Here, we present two privacy-constraint functions used in
the privacy-join function. One is the level-constraint func-
tion that automatically controls the data shipment directions
according to privacy level settings. The other is preference-
constraint function that is a subjective privacy setting approach
to limit the scope of data dissemination.

1) Privacy Level Constraint: According to our proposed
privacy model (see Section II-B), RS will be tagged with a
specific privacy level, denoted as P , where P ∈ N0. Here

Fig. 4. An illustration of privacy preference on shipment scope. Note that
the threshold of privacy preference is represented by a list. The data in edge
node E1, E2, E3 has the same privacy preference scope.

larger numbers represent higher privacy level, hence, we use
P := 0 to denote the public data. We present the details of
level-constraint function in Algorithm 2. The function first
checks the root site of the plan candidate by comparing the
current iterative site to the root site of the plan candidate.
If the two sites are the same edge site, it will skip without
any actions due to no cross-site shipment, hence, there is no
privacy leakage risk; otherwise, it will generate a receive-node
to denote the shipment procedure (line 17). It then compares
the privacy level between the current iterative site and the root
site of the plan candidate. If the privacy level of the root of
the plan candidate is higher than the site’s privacy level, the
function returns a true signal to prune the join operation in
the search space tree (line 18); otherwise, the function creates
a new receive-node with the same privacy level of the current
site (line 20). Finally, the new receive-node will replace the
root of the plan (line 22).

Note that considering our privacy guarantee, the root of the
plan candidate will be assigned to corresponding privacy level
if the root node is transferred to a higher privacy level edge
site, due to avoiding the intermediate-data-inference exposure
(line 21).

2) Privacy Preference Constraint: As proposed in Section
III-A, the privacy preference constraint limits the data ship-
ment scope. Here, we use a list to represent the threshold
λ. To be specific, each edge node will be assigned a list to
indicate its preferred shipment scope in the edge computing
environment. In the query execution phase, the data in an edge
node E is not allowed to ship to other edge nodes that are not
in the threshold list of E.

We use an example in Fig.4 to illustrate the privacy pref-
erence constraint on the shipment scope. Here, if edge nodes
E2, E3 are the desired edge nodes in the shipment scope by
a user who stores data in E1, the threshold will be denoted
as λE1 = {E1, E2, E3}. The preference-constraint function is
presented in Algorithm 2.RS is assigned with a threshold λ to



control the scope for sensitive data dissemination. The query
plan including the cross-site join operations that try to ship
the data out of the scope will be removed from the query plan
candidate list. Specifically, the function first traverses the entire
leaf nodes, i.e., RS in the query plan, to find the threshold
(lines 25-26). Then, if the threshold has a valid format, the
function checks the presence of the target site e in the threshold
list (lines 27-28); After checking each leaf node, if there is still
no constraint violation, the function returns a false signal (line
29).
B. Cost Model and Latency-aware Optimization

Even though the centralized cost measurement model is rea-
sonably straight-forward to apply, the cost model to estimate
the cost of performing cross-site joins is still a challenge due
to unpredictable and time-varying network characteristics [10],
[17], [18]. In the centralized setting, the cost of performing
SPJ operations in the absence of indices is the cost to scan
relations and writing out the results, which is related to I/O
operations. Similarly, the seq-window operator (see CQL in
STREAM [15]) that uses a temporary queue and synopsis
structures is also an I/O related operation. Here we use Ccent

to represent all operation costs in the centralized setting.
Dynamic Cost Model. In the distributed setting, the cost of
performing cross-site join is an important component of the
overall query execution cost [10]. The cost model in our
framework directly adopts Ccent based on previous work and
focuses on additional cost incurred in the distributed setting.
The cost model is described as follows:

fcost(L) = Ccent +
∑

∀(ei,ej)∈L

(n
ei→ej
bytes · t

ei→ej
estimate)

where nei→ej
bytes and tei→ej

estimate are the number of bytes shipped
from ei to ej and the estimated time for shipping one byte,
respectively.

We next present the details of how to measure the estimated
time of transferring one byte of data. As a straight-forward
approach, this could be achieved by sending nsend bytes and
recording the average time tavg for every tinterval. However,
it is unwise to monitor the real-time network traffic for a
database system due to excessive consumption of bandwidth
resources. Therefore, we use the network traffic performance
observed in the last tinterval to estimate the current per-
formance. Specifically, the estimated testimate is defined as
follows:

t
ei→ej
estimate = α · tavg/nsend

where α is the coefficient that indicates the potential risk. Here
we define α as arctan(dgeo(ei, ej)) · 2/π, where dgeo(ei, ej)
is the geographical distance of edge server ei and ej . The
geographical distance is a constant and does not change over
time. A longer distance indicates higher potential risk, hence,
we use distance as the coefficient in the above equation and
we use the arctan function as the normalization method for
distance instead of the min-max normalization method due to
consideration of non-linear property in the arctan function,
which resembles more real-world scenarios.

Algorithm 3: Latency-aware function
1 function LATENCY-AWARE-PRUNE(plans(S))
2 result := {∅};
3 foreach site e do t[e] := null;
4 foreach plan p in plans(S) do
5 c := extract the catalog information;
6 if fc(p) < fc(t[e]) such t[e]6=null then t[e] :=p;

7 foreach site e do result.add(t[e]) such t[e]6=null;
8 return result

TABLE III
EDGE NODE SIMULATION.

Edge Node Address Privacy Level Geography

10.0.1.{1-8} {0,0,0,1,2,3,4,5} Area nearby Pittsburgh, PA
10.0.1.9 0 Erie, PA
10.0.1.10 1 Philadelphia, PA
10.0.1.11 2 Allentown, PA
10.0.1.12 3 Harrisburg, PA
10.0.1.13 0 Cleveland, OH
10.0.1.14 2 Morgantown, WV
10.0.1.15 3 Washington D.C.

Latency-aware Optimization. The latency-aware optimization
is based on the dynamic cost model, which tries to choose the
query plan that has the minimum cost value. The generated
query plan has lower latency due to two reasons: (i) it benefits
from the edge computing settings, i.e., the edge server is close
to the query executor, and (ii) it adopts our proposed cost
model that dynamically adjusts the evaluation weight accord-
ing to the performance of the network traffic. The function
is presented in Algorithm 3. The function first initializes an
empty set that will be used to store the pruned plans and a
temporary array to store plan candidates for each possible site
(lines 2-3). Based on the dynamic cost model, the function
traverses the entire plan candidates to find the plan that has
the minimum cost and stores it in the temporary array (lines
4-6). Finally, it clears up the final results and returns them
(lines 7-8).

V. EXPERIMENTAL EVALUATION

A. General Setup
We performed the experiments on a Unix-like operation

system. The main hardware includes four 2.5 GHz Intel
Core i7 processors, 16GB memory, and SSD hard disk. All
algorithms of our framework were implemented using Java.

We simulate a set of edge nodes with artificially injected
network latency between them. The query optimization phase
only focuses on the generation of a logic query execution plan,
hence, the simulation approach with proper catalog settings
is used in our study, similar to the experimental setup in
earlier work [9], [11]. Specifically, we simulate 15 edge nodes
with specific geography information, as shown in Table III.
The latency (ms) of the network traffic is estimated based
on the distance (miles) using a linear model proposed in
[14]. The model is specified as y = 0.022x + 4.862. All the
experiments were executed using randomly generated queries
over randomly generated relations/streams that are distributed



TABLE IV
DISTRIBUTION OF RANDOM RELATIONS/STREAMS CARDINALITY.

Relation Type Cardinality of Relation Simulation Distribution

I 10-100 5%
II 100-1000 15%
III 1,000-10,000 30%
IV 10,000-100,000 30%
V 100,000-100,0000 15%
VI 1,000,000-10,000,000 5%

† The cardinality of a stream indicates the size of synopsis in DSMS.

on the 15 edge nodes. This experiment setup is similar to
model used in [9], [11].

B. Results
We first compare the performance of the proposed Query-

Guard approach with existing IDP1 approaches in terms of
execution time and memory usage. The privacy-preserving
feature is illustrated using a case study on optimization of a
randomly generated query. Finally, we present the performance
analysis of latency-aware feature of QueryGuard.

1) Comparison to IDP1: For our experiments, we first
generate 10 random relations with random cardinality. The
cardinality distribution of each random relations/streams is
shown in Table IV. The test queries are also generated
randomly with the relation size ranging from 3 to 10 for each
query topology. In our experiment, we test 5 types of query
namely chain topology, cycle topology, star topology, clique
topology, and mixed type. Then, we execute IDP1 [11] and our
proposed QueryGuard algorithm for each query 5 times for
each topology and collect the experiment results to calculate
the mean value and standard deviation value.

The comparison results for execution time and memory
usage are shown in Fig.5 and Fig.6, respectively. Compared to
the IDP1 algorithm, our proposed technique has non-negligible
performance advantage both in execution time and memory
usage aspects. Recalling the details in Algorithm 1, it is
reasonable according to the theoretical analysis. Our privacy
setting operations in the algorithm is a heuristic that leads to
early pruning. In other words, if one node of the branch in the
search space tree violates the privacy constraints, the search
on such branch will be stopped immediately. Thus, it will save
both time and memory when executing our proposed approach.
Note that the purpose of the comparison is illustrating the
performance efficiency of our privacy settings. Even though k
is an important parameter in iterative dynamic programming
query optimization algorithm, where 1 ≤ k ≤ n, n is the
total size of relations, here we just test three case of k, i.e.,
k = 3, 5, 7.

2) Case study of privacy-preserving processing: We run a
series of experiments to evaluate the effect of the privacy-
preserving query processing feature in QueryGuard. First, we
randomly generated relations and stored them in the 15 edge
nodes with specified transmission threshold. Then, we test
several random queries by generating optimal query plans and
validate if the privacy requirements are achieved.

TABLE V
AN EXAMPLE OF RANDOMLY GENERATED RELATIONS/STREAMS.

Relation/Stream Edge Node Transmission Threshold

A1 10.0.1.{3,4,5,7,10,14,15} 10.0.1.{1-12}
B2 10.0.1.{6,8,11,12} 10.0.1.{1-12}
C3 10.0.1.{2,6,11} 10.0.1.{1-12}
D4 10.0.1.{2,4,5,6,11,12,13} 10.0.1.{1-12}
E5 10.0.1.{4,12,13} 10.0.1.{1-12}

Here, we use an instance to illustrate the feature. Specifi-
cally, we present the 5 random relations, i.e., A1-E5, which
are depicted in Table V. According to privacy function (see
Section III-A), we can infer that the privacy level of B2 is 2,
while others’ privacy levels are 0. The specified transmission
threshold, i.e., 10.0.1.{1-12}, indicates that the relations and
immediate data during the query execution phase will not be
transferred outside of Pennsylvania State (referring to location
information in Table III). We can find that B2 and C3 are
located at Pennsylvania entirely. Here we suppose the query
site is at 10.0.1.6. The generated privacy-preserving optimal
query plan is shown in Fig.7 based on a cycle join query,
i.e., A1./B2./C3./D4./E5./A1. According to the optimal
query execution plan depicted in Fig.7, both privacy level
constraint and privacy preference constraint are not violated.
Our proposed technique satisfies the privacy goals.

3) Effect of latency awareness: We also run a series of
experiments to evaluate whether the latency-aware cost model
influences the performance of our proposed framework. We
perform another group of experiments with constant network
traffic instead of the proposed latency-aware approach in order
to compare with the normal QueryGuard algorithm. As shown
in Fig.8, we present the comparison result of the performance
of our QueryGuard algorithm to the QueryGuard algorithm
without latency-aware setting in aspects of execution time and
memory usage. The latency-aware setting has a negligible
effect on the memory usage of the algorithm, while the
execution time cost has slight growth when the relation number
increase. Note that here we only present the results of chain
and clique queries due to page limitation. The remaining three
query topologies have the similar trend, hence, we do not
present them.

VI. RELATED WORK
Recent advances in edge/fog computing brings both ad-

vantages and challenges [1]–[3]. The low latency feature
of edge computing can enable the application with lower
responsive time requirement possible due to its close-to-data
computing model. Thus, edge computing is becoming a critical
infrastructure in emerging application scenarios such as smart
city, Internet of Vehicles, and Internet of Things [3]. However,
compared to the management of cloud data centers, edge
computing’s loose, non-strict management may lead to higher
privacy risk [1], [2]. Privacy issues is a significant concern
when adopting traditional applications to be deployed in an
edge computing environment.

Query optimization in databases is a classical topic.
The query optimizer plays an important role in modern
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Fig. 5. Results of optimization times on five query topologies with different k values.
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Fig. 6. Results of memory usages on five query topologies with different k values.
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Fig. 7. An example of privacy-preserving optimal plan

DBMS/DSMS architectures. Several enumeration approaches
have been proposed to perform query optimization, which
includes randomized search, exhaustive search, heuristic-based
search [16]. The dynamic programming enumeration algorithm
pioneered in IBM’s System R project is widely adopted in
commercial DBMSs [8], [19]. Dynamic programming based
query optimizers can be extended to the distributed envi-
ronments such as the edge computing model. To tackle the
space complexity problem of dynamic programming approach,
the iterative dynamic programming (IDP) was proposed in
[11]. Distributed query processing is a central component in
distributed database management systems [20]. Several works
were proposed in [5], [9] to address issues in the aspects of
special join, parallelism, communication, and cache.

The network performance has a significant influence in
the distributed query processing and the query processing
efficiency, hence, several network-aware approaches were pro-
posed in [17], [18], [21], [22] to tackle the query processing
issues based on network performance. Ahmad and Cetintemel
proposed network-aware query processing in widely dis-

tributed Internet environment by leveraging knowledge of
network characteristics [17]. Li et al. proposed a federated
information system with query cost calibrator that calibrates
the cost function based on system load and network latency
[21]. Srivastava et al. focused on the problem on how to place
operators along the nodes of the hierarchy in stream scenarios
so that the overall cost of computation and data transmission
is minimized [22]. Pietzuch et al. proposed a SBON layer
between a stream-processing system and the physical network
that manages operator placement for stream-processing sys-
tems [18]. Even though network-aware approaches have been
used in query processing in [17], [18], [21], they depend on the
existing knowledge of network characteristics such as topology
and link bandwidth which would be sometimes difficult to
obtain in decentralized edge computing scenarios.

We note that the traditional query optimization research,
especially distributed query processing techniques, have not
considered the privacy issues associated with the data trans-
mission during query processing [6], [10], [11], [16]. A few
database systems [12], [13] employ cryptography to protect
the underlying data, however, such cryptographic techniques
are not very efficient in edge computing scenarios due to their
heavy computation cost. PAQO proposed in [4] deals with the
privacy concerns in the query generation phase. Its privacy
protection is based on inquirers’ subjective setting rather than
based on data owner’s perspective. SMCQL proposed in [7]
translates SQL statements into secure multiparty computation
primitives to tackle privacy issues in the private data network,
but it does not address the intermediate-data-inference disclo-
sure. Both PAQO and SMCQL need an honest and trusted
third party to support the query.

Unlike the above-mentioned techniques, the privacy-aware
query processing proposed in our work does not require
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Fig. 8. Results of performance with the affect of using latency-aware cost model.

a trusted third party and as shown in the evaluation, the
approach is highly scalable under a wide range of experimental
conditions. To the best of our knowledge, the work presented
in this paper is the first significant effort in developing a
highly scalable and efficient privacy-aware and latency opti-
mized query processing in edge computing framework without
requiring the use of a trusted third party entity.

VII. CONCLUSION

In this paper, we propose QueryGuard, a privacy-
preserving latency-aware query optimization framework, to
tackle privacy-aware and latency optimized query process-
ing in edge computing environments. While edge computing
provides a unique ability to store and process large amounts
of data on servers and computing units located close to the
data sources such as sensors and mobile devices, conventional
query processing techniques applied in an edge computing
environment can lead to higher risk of disclosure of private in-
formation from the edge nodes. Our proposed work deals with
both the privacy concerns as well as query latency optimization
for distributed join query processing. The proposed query
optimization mechanism generates optimal query execution
plans that ensure users privacy preferences on their sensitive
data stored in edge nodes during the query execution. We
evaluate the proposed techniques in terms of execution time
and memory usage and our results show that the proposed
methods perform better than conventional techniques while
achieving the intended privacy goals.
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